
k} •Module Interconnection Frameworks
0 - for a

S= Real-Time Spreadsheet

01-M Final Report

Program: SBIR N92-112

Scientific Officer: Ralph Wachter, Office of Naval Research

Principal Investigator: Richard Clarke, RTware, Inc.

Date: October 19, 1993

DTIC
dE

E
i' D E C15 199

prTov"d public 9 5 2,;,••93-25625

93 10 22 030
RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page I

Best
Available

Copy

2.0. Abstract

Phase I research into a modular real-time spreadsheet has yielded a significant result: A spreadsheet can
be used to completely simulate, completely prototype and completely implement distributed control
systems. A usable implementation of such a system will be done in Phase I1. Commercialization will
begin in the middle of Phase I1, with the release of a set of distributed processing op!ions for RTware's
ControlCalc product. Demonstration applications in Naval applications will be done in cooperation with
RTware's existing Naval customers.

A real-time spreadsheet will be used to build nodes in a software module interconnection framework
(NMIF). allowing interactive, on-line construction of distributed control applications. Due to major
advances in spreadsheet software technology already implemented in ControlCalc, the commercially-
available spreadsheet to be used. the system will allow protutyping, simulation, top down design and
implementation down to the final, lowest-level runtime machine code. The MIF is Polylith, which
provides a remote function calling and message-passing abstraction that can be used by any language.
including a spreadsheet. A graphical diagram editor will provide visualization of and navigation through
the module framework.

The major spreadsheet advances are: on-the-fly expression compilation, multi-threading evaluation, and
multi-tasking text or graphical user interface sessions. Important supporting capabilities include: in-line
I/0 functions for direct access to analog or digital hardware and file or network protocols, strong typing.
direct mapping to the output of graphical user interface editors. and extensibility through calling user-
supplied functions in other languages directly from compiled spreadsheet expressions.

Accesion For

NTIS CRP' "Jd
DTIC TAB
Unannounced
Justification ---...............

By----

Di-t ib: ti,'l I

! A ': -, •' or
Dist

Statement A per telecon Ralph Wachter

ONR/Code 1133
Arlington, VA 22217-5000
NWW 12/15/93

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 2

2.1. Introduction

A commercially available real-time spreadsheet will be integrated into a module interconnection
framework (MIF), creating a distributed control system (DCS) with major improvements in programming
productivity and system performance over existing software technology. A consistent, high performance
DCS running on a wide range of heterogeneous computer platforms will have application in Naval and
commercial software programs ranging from embedded control to data center operations. Existing Naval
applications using RTware software with Navelex and the Naval Research Laboratory will be used as
demonstrations of the resulting product.

The spreadsheet package will be ControlCalc from RTware. Uniquely among spreadsheets, ControlCalc
evaluates compiled code in a multi-tasking, shared memory system organized in a three-dimensional
spreadsheet format. ControlCalc is already in use in demanding commercial and DoD applications such
as turbomachinery control, mainframe monitoring, and airfield control tower control.

The MIF package will be Polylith from the University of Maryland. Developed under DoD contracts,
Polylith is a software bus that supports network message passing and high level interface definitions
between software modules running on heterogeneous computer systems. Language independence and a
module interface language and compiler allow spreadsheet modules to communicate with modules
implemented in languages such as C which have a Polylith interface. Easily portable, Polylith is in use
already in distributed applications.

The Phase II work plan involves three major stages: (1) DCS-I, (2) DCS-II and (3) a graphical
programming interface. DCS-I will build on initial design and prototyping work from Phase I to let
ControlCalc users interactively declare module interfaces and invoke remote services over Polylith
directly from aliased spreadshcet functions. DCS-I1 will use both Polylith and shared memory
technology to allow the distribution of threads of control within the spreadsheet matrix over tightly or
loosely coupled processors. The graphical programming interface will let users construct applications at
the module level, with hierarchical module creation and run-time application visualization.

DCS-I will support interactive definition of module interfaces and the binding of interface parameters to
spreadsheet data cells, thereby enabling functioning prototypes to be rapidly constructed. Each module
would be implemented as a separate spreadsheet, capable of running on any supported platform. The
spreadsheet interface allows designers to view live data, interactively change data to test the interfaces
and construct simple spreadsheet functions that simulate the intended operation of the module. As the
spreadsheet functions are as efficiently evaluated as functions in any other compiled language. such
simulations can be interactively enhanced until they completely implement a module's specification. In
fact. the spreadsheet can be considered a specification language, since functions, comments, task
scheduling declarations, 1/0 declarations, report formats. etc. can be entered into the spreadsheet in
readable form, yet directly executed by the spreadsheet at compiled speeds. It should be noted that
spreadsheets are very heavily used in commercial applications for their modeling and what-if
capabilities. DCS-I will result in commercial application immediately. through the release of an
enhanced ControlCalc product with a Polylith option. Demonstration projects with DCS-I with Navelex
will show immediate commercial applicability.

DCS-II will provide much higher performance than existing DCS systems that use a data-base paradigm
with message passing. The ControlCalc compiler will use module interconnection declarations to resolve
inter-module references. keeping the spreadsheet data matrix in shared memory when possible. Real-time
synchronization of distributed concurrent modules will be accomplished by allowing module interfaces to
declare monitor, signal and wait operations. Implementation will use ControlCalc's existing semaphore-
based synchronization primitives. Commercialization of DCS-II will focus on the DSP programming
market, using the NRL demonstration project as a motivating example.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 3

The graphical programming stage will provide block functions with graphical front-panel displays that
can be created by users with spreadsheet arrays mapped directly into graphical object attributes. Existing
ControlCalc declarative techniques for mapping graphical attributes to spreadsheet tabular data will be
extended to create an object-oriented graphical environment. Today's controls and automation market
has a high demand for graphics, both in programming and end-user interfacing. ControlCalc's existing
techniques for driving graphical displays and graphical editors have proven very popular. Enhancements
in this area will be immediately commercialized as soon as consistent sets of features are implemented.

In general, commercialization of the resulting product will be done through RTware's control systems
business and through major corporate partners and OEM's such as Motorola Corporation, Encore
Computer Corporation and Gespac S.A.. Successful ControlCalc applications in DoD and private
industry have validated the real-time spreadsheet paradigm. Integration of ControlCalc technology in
MIF will allow large-scale applications to make incremental and reliable transitions to the spreadsheet
paradigm where appropriate, while preserving existing software investments. Important Navy and
commercial applications with critical distributed real-time requirements will be able to achieve the
productivity gains already demonstrated by ControlCalc in high-speed multi-tasking applications.

Leti., of support for the Phase 11 project from existing ControlCalc partners and customers, including
Naval applications, are attached in section 8.4.

RTware, Inc. 714 9th St. Suite 206. Durham NC 27705 Page 4

3. Identification and Significance of the Problem or Opportunity

3.1. Summary

The software productivity problem presents the opportunity for large cost savings if a software
development environment can deliver three critical capabilities:

1) Modular Design with Simulation and Prototyping
2) Effective Interconnectivity
3) Sophisticated Design and User Interfaces

A modular interconnection framework must be simple and flexible enough to allow existing software to
be easily packaged into a modular format. New languages providing fast simulation, prototyping and
implementation must be able to interoperate with older languages through a module interface. Module
interfaces must be quickly constructed, tested and profiled so the sufficiency and efficiency of an
application's modular composition can be determined early in the design cycle. Hierarchical module
libraries must be created which encapsulate generally useful functions for use in multiple applications.

The Phase II efforts proposed here will combine the ONR-sponsored Polylith MIF system with RTware's
commercial ControlCalc spreadsheet system to provide exactly those capabilities in a distributed control
system. The productivity savings opportunity will be proven by applying the resulting system to actual
control applications in use by existing ControlCalc customers, including two U.S. Navy projects, one
through the NRL and one through Navalex.

This is a critical juncture in ONR's MIF research program, a point at which Naval application developers
must be motivated to use MIF through concrete demonstrations of its advantages. A demonstration that
MIF allows as radical a new programming concept as ControlCalc to be integrated into existing Naval
applications will provide that motivation. Commercial success of the technology is guaranteed. as the
ControlCalc system is already proven in commercial applications to have significant competitive benefits
in performance and ease of use. Furthermore, major new commercial opportunities will be realized,
since the MIF capabilities required by the Navy are also important in the commercial distributed control
systems market. The work proposed for Phase II directly addresses the technical issues which RTware's
market experience indicates are important in the further development of the ControlCalc product.

3.2. Detailed Description of Problems and Opportunities

This section provides detailed discussions of the problems and opportunities, including descriptions of the
two software systems involved. Polylith and ControlCalc.

3.2.1. The Problem Statement

With the increasing level software functional requirements and the large cost-performance advantages of
multi-processing hardware, the level of complexity in software systems is increasing exponentially.
Particularly within DoD control systems, requirements for redundancy, recoverability and reliability
increase demands on software systems which must also maintain the highest level of algorithmic
sophistication possible in their mission-critical, competitive environments. The result is a rapid
expansion in software development costs, and increasing difficulty in proving system reliability.
Software engineering techniques that provide measurable increases in productivity will provide very
large benefits in reduced cost, improved functionality and faster deployment.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 5

3.2.2. Modular Design

The primary productivity technique for solving the software complexity problem is modular design.
Modular design allows components of a system to be specified in terms of the interfaces they present
between each other and the internal transformations they make on data passing through those interfaces.
Once defined, modules can be implemented and thoroughly tested without requiring completion of the
entire system. Howcver. it is often necessary to prove out low-level functionality before the feasibility of
a high-level design can be assured. This means that there is a need for rapid implementation of low-level
modules and flexibility in the design of their interfaces.

The opportunity addressed by this proposal is to provide high-level modular design tools for distributed

systems, while also providing a simple and productive programming system for internal module design.

3.2.3. Module Interconnection Framework: The Polylith MIF

A Module Interconnection Framework (MIF) is a system which allows software modules to connect to
each other using a formal interface structure. Polylith is a MIF system developed at the University of
Maryland under ONR and DARPA contracts. Polylith's interface structure is independent of the
language and type of computer used to implement the module. Polylith presents a consistent view of data
types, along with automatic data conversion as required. The interconnection mechanism has general-
purpose message-passing and client-server options, and is presented as an abstract software "bus". A
module specification language (MIL) is used by developers to declare module interfaces without regard
to the module implementation language. A MIL compiler builds the bus from a set of module
declarations.

Due to the language independence of the Polylith system. incremental use of the spreadsheet module
construction system will reduce the risk of adopting that new design methodology. The simplicity of
porting Polylith and of wrapping existing code in Polylithic modules means that there is a low cost for
adding Polylith capability to existing software systems.

3.2.4. Advances in Programming Productivity: The ControlCalc Spreadsheet Paradigm

Commercial control applications currently running with ControlCalc demonstrate that major productivity
gains can be realized through the use of spreadsheet techniques. This is particularly true in continuous
processing. real-time types of applications. A spreadsheet can be considered a collection of rules
operating on a data space, or a simple functional language. Continuous processing real-time applications
typically acquire data. apply a set of rules and output the results. Inputs and outputs can both be real-
world sensors and actuators, in which case it is a feedback control system. Inputs can be real-world data
and outputs be data storage and human visualization, in which case it is a data acquisition system. A
number of significant application cases demonstrate that a spreadsheet is a natural tool for specifying
continuous processing rules.

3.2.4.1. ControlCalc's Design: A Competitive Advantage

ControlCalc is a spreadsheet designed for rapid implementation of the all levels of real-time applications
by the control or software engineer. With ControlCalc. the application development process is done
within the spreadsheet, without sacrificing performance or functionality. ControlCalc achieves that result
with four major innovations:

1) On-line compiling.
2) Continuous multi-tasking evaluation in a shared memory model.
3) Direct real-world I/O functions.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 6

4) Expanded data types and functions

Real-Time performance comparable to 'C' programs is achieved by embedding an on-line compiler that
converts spreadsheet functions to highly efficient machine code. On-line, embedded compilation directly
into executable memory is fast enough to maintain the interactive feel of a spreadsheet.

ControlCalc is a three-dimensional spreadsheet and provides multi-tasking evaluation of each page as a
separate task or thread. The three-dimensional spreadsheet matrix is kept in shared memory, and acts as
an on-line matrix data base directly referenced by the compiled spreadsheet expressions. The spreadsheet
application designer declares the trigger mode (cyclic, event-driver, interrupt service routine) and
parameters of each page allowing the ControlCalc run-time executive to start, stop and manage running
the application. The user-interface part of the spreadsheet is on-line at all times, allowing the user to
move around and inspect any expression's results while the system is running. Manual run control, on-
line source statements and very minimal edit and compile turnaround times make the spreadsheet an
effective debugging and prototyping system.

Direct real-world I/O is accessed by 1/0 functions that are part of the standard spreadsheet function set.
The user declares logical I/O port numbers and selects from a list of supported I/O hardware, including
analog, digital, counter/timers, and network options. Unique buffer cells (fifo or lifo) support large data
sets without the per-point spreadsheet cell overhead, with DMA drivers for acquisition and file
operations.

ControlCalc expands the traditional number/text data types of a spreadsheet to include integers, real
numbers, booleans, variable text strings, constant text strings and array buffers. Each type comes with a
full set of functions and operators that make ControlCalc a full-featured programming language.

3.2.4.2. ControlCalc Productivity Demonstrated

In ControlCalc applications, a controls consultant indicated that large state-table driven algorithms for
chemical process control could be expressed reliably in a spreadsheet in a matter of hours, while
traditional control languages required weeks of implementation and testing. In another application, a
process control engineer doing multi-loop (60 task) control of high-speed motors reports major
productivity improvements, particularly in program maintenance, when compared with traditional control
systems from a leading international controls company. His project involved two years of side-by-side
pilot projects in actual production on their natural gas pumping stations. The project resulted in the
selection of the ControlCalc spreadsheet for future turbine control systems over one of the most advanced
programmable controllers on the market today. Finally, a system monitoring and adaptive tuning
application for large-scale multi-processing UNIX mainframe-class systems was developed with
ControlCalc and deployed in less than one person-year. With over 200 display screens, 1000 1/0 points
per node and 30 different major tasks. this system is judged superior to competitive systems that required
dozen's of person-years of development.

3.2.5. Distributed Control Systems: The DCS problem

Distributed Control Systems (DCS) have been in use in private industry for over twenty years. A DCS
system is a loosely coupled processor network usually involving supervisory computers and dedicated,
proprietary programmable controllers. DCS systems have three major problems: interoperability,
performance and a limited domain.

Lack or interoperability in DCS systems is a problem because DCS systems are proprietary. Each
manufacturer has their own controller, control programming language, network hardware and network
protocol software. Efforts to standardize within the industrial market ha,'e failed, particularly the MAP

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 7

(Manufacturing Automation Protocol) promoted by General Motors. While standardization efforts
continue with the industrial network concept called FieldBus, two major groups have already split off,
ISP headed by Seimens and WorldFIP with Honeywell and Allen-Bradley. Furthermore, neither of these
specifications addresses the domain of modular programming, focusing instead on communication with
intelligent I/O devices.

DCS performance has proved to be a problem due to the database transaction approach that underlies
their design. Schelberg, a leading control software designer, identified file and database access as
limiting factors in DCS performance and proposed virtual shared memory environments as the solution
(Schel 1991).

The ControlCalc MIF solution solves the DCS performance problem by using a distributed spreadsheet
matrix for data storage in shared memory, rather than a file system. The bandwidth limitation then
becomes network and synchronization overhead. Distributed shared memory systems such as Encore's
Reflective Memory System (see section 7.1.2. below) and high performance networks such as FDDI can
solve network performance issues, as long as data is organized in a simple, memory based spreadsheet
structure. The general-purpose MIF approach also solves the interoperability and limited domain
problem.

3.2.6. Graphical Design and User Interface

While a spreadsheet improves ease of use and programming productivity, graphical interfaces must be
presented to both system designers and end-users for maximum usability. A large number of function
block diagram systems are currently available in the commercial market, such as LabView from National
Instruments and VEE (Virtual Engineering Environment) from Hewlett-Packard. In these systems. a
system is designed by graphically wiring together standard function blocks to create data-flow diagrams.
As with DCS, function block diagram systems suffer from a number of problems: poor performance.
lim •::d domain, no distributed processing, and proprietary design. Performance is limited by the
ilerpreted evaluation modes and message passing rather than shared memory data flow paths. Their
domain is limited to data acquisition and analysis with no open interface for distributed or modular
extensions.

However, the basic idea of data flow diagrams is a useful concept, when applied to an underlying engine
that meets the performance and modularity requirements of ONR. Modular Interconnection Frameworks
can be naturally expressed in graphic diagrams.

The major opportunity for the ControlCalc MIF system is to extend the diagram concept into the
spreadsheet itself. The DCS-II proposal (see section 5.3.) makes each page. or task, of the spreadsheet a
module on the Polylith bus. In addition, a task itself can be expressed as a set of function blocks with
connections specifying the external references. Within a spreadsheet task, the connections would resolve
to direct shared memory references and the function blocks would be implemented as sub-ranges or
blocks of spreadsheet expressions. In addition to data flow connections, the diagram system will allow
the designer to specify the order of evaluation and apply iteration control function blocks.

32.6.1. Driving GUI Interfaces with Spreadsheet Data

The current ControlCalc product provides a graphical user interface construction kit, including a GUI
editor, a library of common control panel gadgets and an attachment declaration utility. This system
reduces the problem of driving graphical interfaces to a mapping between graphical attributes and
spreadsheet cells. The run-time GUI control task, like the spreadsheet user-interface task, monitors
attached spreadsheet cell locations and redraw gadgets as required. Input gadgets can directly change
spreadsheet setpoint cells, and can trigger command cells which, among other actions, can issue

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 8

commands that change window display attributes. This declarative approach has proven easy to
understand and implement among ControlCalc users.

The opportunity presented by the MIF system is to enchance the spreadsheet GUI mapping system to
support distributed graphics and modular, hierarchical gadget construction. Distributed graphics is
another case of distributed spreadsheet data, and will be solved with the MIF interface. When the
attached data cells are not local to the graphics system, they will either be attached in shared memory or
through the Polylith message-passing interface, depending on the interconnection medium available.
Hierarchical gadget construction will be done by using an object-oriented graphics package, and letting
attachments at each object level be inherited.

The commercial potential of such a graphical interface is enormous. The ability to construct graphical
objects and function blocks within a spreadsheet and to generate compiled runtime code to implement
that diagram is simply not available today. Response from ControlCalc customers and users of
competitive systems point to general market interest in higher performance and greater extensibility in
graphical interface and design tools than current products provide.

4. Phase It Technical Objectives

As the information in this section includes details of customer applications and internal RTware product
development plans. the entirety of section four is considered proprietary information.

4.1. Summary

The basic technical objective is to integrate the ControlCalc real-time spreadsheet into the Polylith MY
system, and provide a graphical interface for both system design and operator interface. ControlCalc's
compiling, multi-tasking, shared-memory programming model will be extended to allow Polylith
message-based distributed services to be declared that directly access the spreadsheet in the DCS-l stage.
Tightly-coupled multi-processing with the multi-tasking spreadsheet model will be implemented in the
DCS-II stage. Performance analysis and schedulability constraints will added through an interface to the
PERTS system. Finally, graphical user interfaces will be developed based on the existing ControlCalc X-
Windows graphical toolkit. The Phase II optional section will be the implementation of a modular
function block diagramming graphical editor.

The spreadsheet packagc %1 ill 'c ControlCak fiorm RTware. Uniquely among spreadsheets. ControlCalc
evaluates compiled code in a multi-tasking, shared memory system organized in a three-dimensional
spreadsheet format. ControlCalc is already in use in demanding commercial and DoD applications such
as turbomachinery control, mainframe monitoring, and airfield control tower control.

The M1F package will be Polylith from the University of Maryland. Developed under DoD contracts.
Polylith is a software bus that supports network message passing and high level interface definitions
between software modules running on heterogeneous computer systems. Language independence and a
module interface language and compiler allow spreadsheet modules to communicate with modules
implemented in languages such as C which have a Polylith interface. Easily portable. Polylith is in use
already in distributed applications.

The Phase II effort will achieve the following technical objectives, with approximate percent of effort:

1. DCS-l 20%
a. Remote access to the spreadsheet from the Polylith bus.
b. Calling remote functions from spreadsheet expressions.
c. Demonstration installations with customer applications

i. Naval air field control towers

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 9

ii. UNIX system health and performance monitor

2. DCS-11 45%
a. Distributed, multi-processing execution of spreadsheet logic.
b. Porting to DSP sub-systems.
c. Demonstration installation with the Naval Research Laboratory Orion project.

4. Performance Analysis: 5%
a. PERTS interface.

3. Graphical User Interfaces: 30%
a. Hierarchical graphical tool for run-time displays. (10%)
b. Modular diagram system (20%) - This is the Phase I1 optional section.

i. MIF network diagram
ii. Spreadsheet function block diagrams

As the time estimates indicate, the DCS-11 effort is the primary work of the project. DCS-I is less
demanding and has been started in phase II. Two demonstration projects need only DCS-I and will be
started when DCS-I is ready for initial release. The graphical interface will be development concurrently
with DCS-11 after the completion of DCS-I.

The following sections details each of these technical objectives.

4.2. DCS-I

4.2.1. Remote Access to the Spreadsheet from the Polylith Bus

The first objective is to allow external processes running on remote processors to access the spreadsheet
using the standard Polylith Bus interface. This will be accomplished by allowing the spreadsheet
application designer to use an interactive tool for declaring external interfaces in a functional form. Once
a functional interface is defined, the tool will generate the necessary interface language files and
optionally coordinate the initialization of the Polylith Bus. Access routines will include the ability to
import and export data from the spreadsheet, to invoke execution of spreadsheet logic on behalf of the
caller, and to apply various synchronization options to the operations requested.

Our Phase I work has resulted in a detailed specification of this tool (see the Work Plan, section 4). and
preliminary work indicates implementation as designed is feasible. This objective is part of the DCS-I
specification.

4.2.2. Calling Remote Functions with Spreadsheet Expressions

The second objective is to allow remote function call: from within spreadsheet logic. This means that
Polylith function declarations will be made visible to the ControlCalc compiler for binding when the
system is started. This objective is part of the DCS-I specification.

Phase I research showed that Polylith data types and function interface declarations are a large subset of
ControlCalc types and interfaces. This means that all Polylith semantics will be supported. but certain
ControlCalc semantics will not. However, the capabilities in question, involving fifo data structures, can
be handled through a series of lower-level calls, and by provision for a specific fifo I/O transfer
mechanism. The fact that the ControlCalc spreadsheet is compiled means that use of an external function
definition is easily done. The natural requirement is that all functions be present and declared at compile
time, with only warnings be posted during editing.

RTware, Inc. 714 9th St. Suite 206, N)tirham NC 27705 Page 10

4.2.3. Demonstration Projects

Two demonstration project- •r, planned using DCS-I software. Both projects build on applications
already designed using C',,'olCalc.

The first project is an extension of the Navelex air field lighting control system developed by Booz Allen
Hamilton in Charleston. SC. That system is planned to be enhanced to add new functions that have to
communicate with a variety of computers. including data acquisition systems, the collision avoidance
computer system and weather data computers. Also, the system will include multiple operator displays.
one at each operator station, each of which should be capable of displaying any of the information
available through any of the interfaces. DCS-I technology will be used to import and export data
between multiple spreadsheet applications and non-spreadsheet applications running on the various sub-
systems. The system will be heterogeneous. with both different computer processors and different
operating systems. and with mixed languages, particularly ControlCalc and C.

The second project is the generalization of the Encore CommandCenter system currently shipping on all
Encore Infinity parallel-processing UNIX mainframes. Encore plans a joint development effort with
RTware to develop a similar system for the high-performance UNIX data center environment. Different
computer architectures and networks will have to be supported. Most networks will be message passing
(typically TCP/IP) rather than shared memory. so the general capabilities of a MIF will be an absolute
requirement. The system will also have to be able to communicate with existing programs. written in a
variety of languages. which already handle particular system management functions.

Both demonstration projects will require DCS-I. although some features of DCS-II will be useful. Both
organizations involved have supplied supporting statements for this proposal (see section 8.5.).

4.3. DCS-II

43.1. Distributed, or Multi-Processing, Execution of Spreadsheet Logic

Distributed or multi-processing execution of spreadsheet logic is the major technical objective of DCS-ll.
The distinction is terminology we use here reflect loosely coupled versus tightly coupled processors.
There are a number of specific technical advantages gained in general by multi-processing. especially
performance and by distributed processing. especially robustness. In addition, there is a major technical
objective in real-time systems that is achieved through multi-processing. that is "hard" real-time
distributed.

High speed. or "hard" real-time applications require an operating system kernel designed for such
applications, including features like direct physical addressing. rate-monotonic scheduling, etc. There are
many such kernels commercially available, and ControlCalc. for example. runs under one. However, the
requirements made on these kernels conflict with the requirements for an operating system used for
multi-user programming. editing and graphical user interface. The standard. open-systems platforms that
are successful today (POSIX, Windows-NT. etc.) are specifically not capable of hard real-time
processing. The solution is to split an application into two components: real-time processing and non-
real-time processing (or "soft". real-time). Typically the "soft". or less time-critical. components
involves user interface, data logging. etc. The editing. configuration and programming of an application
also falls into the soft category.

The distinction between soft and hard real-time processing leads to a natural modularization of an
application. The objective of DCS-11 is to allow spreadsheet application designers to specify that any
spreadsheet task is to run on an attached processor. The compiler will generate the necessary type of
remote data calls.

RTware, Inc. 714 9th St. Suite 206. Durham NC 27705 Page !t

4.3.2. Porting to a Selected Set of Platforms

The Phase 11 project will include porting to a set of platforms including real-time operating systems,
open-systems operating systems and various process targets. The objective is to have a full set of options
which are appropriate for commercial and DoD use. The proposed platforms are:

a) Solaris/Sparc
b) LynxOS on 486 and 68040 processors

LynxOS is a real-time UNIX system, approved by DoD.
c) IXTHOS DSP VME-bus sub-system running SPOX.

This system is specified in the NRL project RTware is working on.
d) National Instruments DSP processor cards running SPOX.

These cards run the same real-time low-level O/S as the IXTHOS system, but go into
PC-AT machines.

e) VMEexec running on Motorola 68040 VME systems.

ControlCalc and Polylith have already been shown to be easily portable to UNIX and UNIX-like
operating systems. The major work required to achieve this objective is porting the ControlCalc code
generator to the Sparc processor and to the DSP processors. ControlCalc has now been ported to three
processors families (486. 68xxx. 88xxx) including a RISC processor. so a realistic time frame of 4-6
months per family is known.

The port to DSP processors is a major technical goal of the DCS-II project. This is for business as well as
technical reasons. Technically. the DSP sub-systems provide extremely high processing for data
acquisition and floating poir.t computation, and are capable of stand-alone feedback control operation.
with both analog input and output. Furthermore, programming such systems must now be done entirely
with low-level C progr.'.mming requiring a detailed understanding of the DSP hardware and low-level
operating system kernel. The technical "fit" between the spreadsheet using fifo history cells with array
operations and the signal processing routines of the DSP board libraries is very close. The tightly
coupled multi-tasking required for high-performance DSP applications also fits very well in the shared
memory multi-tasking model of ControlCalc. From a business perspective, providing the ability to
program DSP systems through a spreadsheet without any loss of performance will he a breakthrougl. in a
market which is already rapidly growing.

4-1.3. DCS-II Demonstration Project

The demonstration project for DCS-I1 will be radar data acquisition. processing and display for the Orion
aircraft radar systems. through the Naval Research Laboratory. ControICa;,, has already been selected for
the graphical interface and system control part of the project. The IXTHOS DSP card has also been
selected for this project. While the project is just starting now, and the final design is not complete, the
principle engineers involved have indicated thý • this ONR MIF proposal fits in exactly with their long-
term design goals.

4.4. Integration of a Real-Time Scheduling Analysis Tool

The Phase I1 project will include use of parts of the PERTS system from the University of Illinois to
allow users to profile and test the schedulability of real-time applications. This work was done under a
DoD contract. Based on Dr. Jane Liu's presentation at the May '93 Prototech conference. it is feasible to
export the scheduling information and performance constraints from a ControlCalc application and use
the analysis tools of PERTS to determine the limits of real-time behavior.

This objective is self-contained and does not directly impact the maiii objectives of developing the DCS-I
and DCS-I1 systems.

RTware. Inc. 714 9th St. Suite 206, Durham NC 27705 Page 12

4.5. Graphical Interfaces

Two technical goals focus on graphics: run-time displays for operator interface for the application itself
and graphics diagram editing to improve software productivity in application development. The
graphical diagram goal is presented as the Phase II optional portion.

4,5.1. Hierarchical Graphical Tool for Run-Time Displays

The run-time display goal is to build on the existing graphical display capabilities of ControlCalc to add
hierarchical graphical structure and improve support for distributed graphic displays.

Currently, ControlCalc has support for an internally-developed graphics package running under X-
Windows for UNIX systems and a similar third-party package running under G-Windows for OS-9
systems. Support for the commercial DataViews product is currently under development. All the
graphical interfaces support multiple logins to a running spreadsheet application and can support multiple
hardware display systems. However, in both cases there must be a separate spreadsheet process
controlling each display and running on the target system.

The fir "echnical goal is to improve graphics distribution by allowing the mapping between spreadsheet
cer. , graphical objects to be supported by general-purpose query functions issued against a
spreadsheet. There will be a query server which would accept requests from display processes over the
Polylith bus, look up or update data in the spreadsheet and send responses. This would allow, for
example, multiple spreadsheet instances to be mapped into single displays. which cannot currently be
done. A set of cooperating modules could therefore present a unified operator interface. Display screens
could be designed which consolidate information from a variety of modules, and allow the operator to
navigate among module displays within a seamless graphical environment.

The second technical goal is to add support for hierarchical, or object-oriented, graphics. Currently the
graphics attachment process is flat, so the user cannot easily create libraries of complex graphical gadgets
built out of simpler gadgets. Both the graphical editors and the spreadsheet attachment structure will be
changed to support hierarchical structure with attribute inheritance.

4.5.2. Modular diagram system

The first objective in this section is to construct a graphical diagram editing tool for visualizing modular
interconnections. This tool will basically allow the Module Interconnection Language files to be
generated by parsing a directed graph diagram of the module interconnections. The tool will include
visual objects which indicate the synchronization primitives applied to each interconnection. Run-time
monitoring of interconnection traffic will also be provided.

The second goal of this section is to provide a function block, or data-flow, diagram front end to the
ControlCalc spreadsheet. This will allow the blocks of spreadsheet functions, data cells, expressions, an
icon and associated graphics to be declared a function block object and stored in an function block
library. A graphical diagram editor will be used to design an application by inserting and connecting
function block icons. The connections will be used to resolve external references from each function
block, and to indicate connections between fifo buffers and signal sources and sinks. Order of evaluation
constraints will be settable. as will such attributes as locked, synchronized evaluation.

The locked evaluation option is an important goal as it allows the ControlCalc compiler to completely
eliminate the overhead associated with existing data-flow diagram systems (e.g. LabView from National
Instruments and Virtual Engineering Environment from Hewlett-Packard). In existing systems. function
blocks are data driven, in that they execute only when data is ready. This means that each block must be

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 13

individually schedulable by some data flow monitor, often implemented as operating system pipes.
However, a typical control or acquisition application in fact works in perfect lock-step, where each data
point is operated on once by each function block in a predef-ined order. So while feedback control
algorithms are often expressed in diagrams, the existing data-flow runtime systems provide extremely
poor performance when used for control systems. With the ControlCalc compiler able to resolve such
synchronized data sets to direct shared memory references, the technical goal of this portion is:

To provide a data-flow diagramming system which maintains the very large performance advantage that
ControlCalc currently holds over existing commercial systems in feedback control algorithms.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 14

5. Phase II Work Plan

All Phase II work will be performed at RTware's Durham, North Carolina facility. All the work is
software engineering, and will be performed on in-house computer systems. At least 90% of the work
will be performed by RTware personnel, either direct employees or full-time contractors. Additional
consulting work with the Polylith and PERTS software packages will be performed by qualified
personnel at organizations directly involved with these products.

All the following information in this section (section 5) is proprietary information.

5.1. Summary

The Phase II effort is planned over a 24 month period. Each stage of work is enumerated and described
in the following table. All times are expressed in months starting from the beginning of work.
Milestones describe events within a stage, and are also expressed in months from the beginning of work
on the entire project. Total effort is expressed in engineering-months and reflects the amount of
engineering time estimate for the entire stage. The total effort figures are used in section 13 as the basis
of the cost proposal. Detailed descriptions of the work plan for each phase are presented in following
sections. The detailed descriptions do not provide further time estimates, instead they describe in as
much detail as is practical the specification of each phase of development. Note that multiple personnel
will be involved and multiple stages will be in progress simultaneously.

As this phase II proposal involves primarily development of concepts and specifications developed in
phase I, the specification describes the work to be done. Note that the DCS-I and graphical spreadsheet
programming tool specifications have been worked out in great detail, and implementation was started in
phase I. In the interests of readability, the specifications of these stages have been placed at the end of
this section so that the stages with more technical interest can be read first

This technical work plan includes early commercialization of DCS-I after twelve months of effort,
including demonstration and beta testing in ongoing ControlCalc applications. Section eight presents a
more detailed commercialization plan. Note that each of the technical stages of this effort involves
significant enhancements to RTware's software product set. Commercial interest by existing and
potential RTware customers is expected to be very high, allowing technical features to be reviewed and
revised through on-going customer interaction throughout the design and implementation effort.

5.2. Stages of Work, Milestones and Estimated Effort

Stage Description Start Time Milestones Total Effort

1. DCS-I Remote spreadsheet access month 0 16 months
Milestones:
a) Specification complete month 0 (completed in phase I)
b) Communication Interface Running month 1 (partially done in phase I)
c) Interface Declaration Tool: month 2
d) Compiler References to external functions: month 4
e) Demonstrable use in demo projects: month 6
f) Commercial availability month 8

2. DCS-11 Distributed Spreadsheet Operation month 2 40 months
Milestones:
a) Detailed Specification month 4
b) Stand-alone run-time month 8

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 15

c) Compiler-generated interfacing month 14
d) Code Generation for DSP processor month 17
e) demonstration at NRL month 20
f) DSP commercial availability month 22
t) Additional code generators month 24

3. PERTS Performance analysis and schedulability month 18 4 months
Milestones:
a) Exporting Data to PERTS month 20
b) On-line PERTS access month 22
c) Commercial availability month 24

4. GUI Graphical User Interface month 0 24 months
Milestones:
a) DataViews sub-view support month 2
b) Inheritance specification month 4
b) Inherited spreadsheet interface month 10
c) GUI server through Polylith month 16
d) Function Block Diagram Specification month 20
e) Commercial Availability month 24

5. GUI Option Interconnection and Function Block Diagrams month 14 20 months
a) Diagram Specification month 16
b) Commercial toolset selection month 17
c) Diagram Edit Tool month 20
d) Spreadsheet Generation month 22
e) Run-time visualization month 24

5.3. Distributed Control System II: Distributed Code

5.3.1. Exploration of DCS-H Issues

DCS-II is defined as the transparent distribution of ControlCalc compiled control "scans" to slave
processors. ControlCalc is already a multi-tasking system. where each page of the three-dimensional
spreadsheet evaluates in a real-time compiled mode. Each scan is controlled by a separate process, with
its own trigger mode (cyclic. event-driven, interrupt service). The compiled code directly references the
shared memory spreadsheet data structure, allowing cells calculated in one scan to be referenced by
another at any time. Counting semaphore functions allow synchronization between scans, through, for
example, the construction of monitors. Although scans are implemented as processes, the system is
conceptually a threaded system, where the spreadsheet data area is the common data space of a process
and each scan is a thread of control running within that data space. In order to understand the issues
involved in DCS-II, it is useful to review the mechanisms underlying ControlCalc's real-time scans.

5.3.1.1. The Compiled Spreadsheet Structure

The basic mechanism is to compile the formulae entered in the spreadsheet into C-callable subroutines,
one for each page of the spreadsheet. Natural spreadsheet evaluation order (row-major) provides the
basic flow of the program. GOTO and GOSUB functions allow programming branches, loops and
subroutines, similar to a BASIC program. Unlike BASIC, however, the normal result of each statement
is to compute and return a value which becomes the current value of the cell containing the statement. In
a very real sense, this type of spreadsheet evaluation can be considered a rule-solving system, where sets
of rules (logical, text or arithmetic functions) are scanned to recompute the state of a system. This has a
strong correspondence to control systems programming, which is often considered a set of control laws

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 16

U S

that are applied to a set of inputs in order to generate a set of outputs. Many functions, of course, operate
primarily through side-effects, which we will consider below. One important feature: the spreadsheet
does not allow address computation, except through indexing operations into ranges, or tables of data in
the spreadsheet.

Disregarding side effects, the rule-solving evaluation mode results in a simple model of distributed
evaluation, based on each scan being assigned to a separate, remote or tightly coupled processor. In
downloading a page of the spreadsheet to a remote processor for scanning, one is also downloading the
data space associated with all writes by that page, since a function's data and formula (or rule) are two
attributes of a spreadsheet expression cell. Since no address computation is allowed on writes, inter-page
references can be captured at compile time and packaged for remote access. In ControlCalc, range
references are restricted to intra-page only. That means that ranges can only be two-dimensional and
must therefore be fully contained within one page.

5.3.1.2. Handling Side-Effects

There is one important class of side-effect functions which violate the rule-solving nature of the
spreadsheet. These are the "SETVAL" functions. SETVAL and its indexing cousin ISETVAL are the
ControlCalc names for the functions which can write a value into a cell other than the current expressior
cell. These are assignment functions. There is no restriction on page locality for these functions.
However, like all cell references, they either reference to a specific cell, determinable at compile time, or
they index into a specified range of cells, determinable and restricted to one page. These functions are
included in the ControlCalc programming model to simplify programming of state systems. Without
these, a spreadsheet is a stateless language.

While stateless languages ar. . ;te robust, and easily understood for stateless applications, they require
excessive complexity when tryii to implement algorithms that are essentially state machines. In control
programming. a combination of state and stateless programming is usually required. Stateless
programming is used to apply invariant rules to a system. Continuous feedback algorithms are usually
stateless, using running integrators and differentiators to measure time-dependent behavior. Safety
interlocks are best implemented in a stateless manner. To do that, all output devices should be written at
one point in the process. That way, illegal or unsafe conditions can be checked to minimize problems
caused by, for example, unforeseen errors in a state sequence. On the other hand, many real-world
processes are state machines, involving a sequence of events driven by changing real-world inputs.
Implementing these sequences as a set of invariant rules makes the rules quite complicated, while a state
sequence implementation would be very simple. Therefore a complete control programming system must
include both capabilities. The impact of assignment functions on a distributed processing system is to
require support for remote writes as well as reads.

5.3.1.3. Packaging Remote Data Access

In packaging remote data access, there are two choices: message passing or data mirroring. Message
passing means that every time a remote data point is referenced within an expression, the compiler
generates a remote read call directly in-line in the code. Data mirroring means that the remote data set is
block-transferred at some point, and then accessed locally. While data mirroring is more efficient, it
cannot be implemented reliably without a caching mechanism. Such caching would mean that data
would be transferred through to remote nodes when written (write-through cache) or only when changed
and required by a read (deferred write-through). The overhead of doing a software cache over a network
makes it impractical. However, on systems with shared memory hardware, it is very practical.
ControlCalc currently runs on such a system: the Reflective Memory System (RMS) used by Encore's
Series 91 and Infinity computers.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 17

In the absence of distributed shared memory hardware, we intend to implement a full message-passing
system. This approach can achieve the performance of a data mirroring system, if the application was
designed with distribution in mind. ControlCalc provides block copy functions (another variation on
SETVAL) which lets data be copied between different ranges of the spreadsheet. By setting of the
system so that remote data is block-transferred precisely when needed, local references can made to the
copied data, greatly reducing the number of remote accesses required.

The explicit block transfer approach fits well with stateless programming techniques. In fact it can be an
advantage in the software design because data references are packaged and executed only at one point in
the logic, eliminating the possible race condition bus that often occur in multiprocessing. The
disadvantage of explicit block transfers is that they must be explicit. The application therefore becomes
less portable. More precisely, it becomes potentially less efficient when configured on a shared memory
or single-processor system.

Message passing can be considered in two forms: explicit and transparent. Explicit message passing
would involve a message from one scan requiring a response from another. This mechanism is already
provided using the remote procedure calls running over Polylith. Explicit message passing requires the
use of specific remote access functions.

A transparent message passing system would involve a data server process running automatically on each
node that is running ControlCalc scans. The compiler would generate a standard message call that would
request data from a remote node whenever a remote reference is encountered in the program. Since all
scans are compiled at once, such data references could be pre-compiled down to indexed table lookups,
reducing the overhead of traversing the spreadsheet sparse matrix to find each data point. The
transparent system would also be implemented with Polylith, but without requiring specification by the
user.

Finally, in all implementations. it is necessary that counting semaphores be supported across the entire
distributed environment. Without this capability, it is difficult or impossible to create tightly coupled
applications that work reliably in distributed environments. Once again, ControlCalc does not allow
signal address (or i.d.) computation. so the compiler can determine the set of scans that are attaching to
specific signals. Signals can therefore be arbitrated by any one of the set of scans, without requiring a
central signal arbitrator. This will increase the robustness and performance of the system by allowing
signal communication within multiple localized areas of the distributed application.

The key to efficient programming with transparent message passing is for the programmers to understand
the mechanism and the cost of remote access. In particular, they should be aware that block transferring
data prior to using it, and synchronizing block transfers with signals will both minimize communications
traffic and increase soit'?, are reliability.

5.3.1.4. Advantages of DCS-II

The advantage of DCS-II is that no p,ogramming is required to explicitly pass messages between the
different scans of the application. The ControlCalc spreadsheet programmer already interactively
declares a scans operating mode, from a short list of choices and parameters. To run a scan remotely.
only some additional parameters will be required in that declaration. These parameters would specify the
host, the network port with any associated configuration parameters and possibly the network operating
mode.

One of the key design goals is to preserve the fundame,,,al advantages of the ControlCalc spreadsheet
paradigm. In particular. the system must pre:'•nt on-line updates from all active nodes to the user-
interface part of the spreadsheet. ýý" ,ow, ControlCalc users can watch spreadsheet cell values
changing in any scan in the system by simply looking at the cells which define the function being

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 18

executed. This is inherent in the shared memory design of the spreadsheet, since both the executing
scans and the spreadsheet interface are using the same shared memory locations for the data. The user
interface program is simply polling and displaying the most recent result at a speed (about 5 Hz) which is
adequate for human reaction. This shared memory approach also allows the inclusion of custom
graphical user interfaces by mapping the variables associated with graphics objects into the same shared
memory areas. Manipulating graphical objects is thus done through a declarative interface which
establishes bindings, and does not require any programmatic language support for the most common
operations.

5.3.1.5. Implicit Message Passing

The most difficult part of the DCS-11 design is the implicit message passing between the "threads" of a
ControlCalc spreadsheet. ControlCalc's organization allows the user to declare any page of the three-
dimensional spreadsheet to be a scan ("thread"). Each page can contain both function cells with both the
expression and its result and data cells of various types. This organization lends itself well to the DCS
system because the data on a page can be kept locally on a remote note along with the code for that page.

However, the spreadsheet model treats all data cells as globals in the sense that cells on one page can be
read by expression cells on another. There are even cell write functions that do cell assignments by side
effect. Note that except for the cell write functions, a spreadsheet expression writes its result to the data
part of the expression cell itself, so by far the majority of writes are local.

The spreadsheet compiler will have to handle remote reads and writes, and should do so without
requiring any explicit programming. The simplest method is to have the compiler convert all remote
reads and writes to message calls, in-line at the point the executing function requires the access. This
will maintain complete consistency when done with a bus such as Polylith that insures atomicity of these
operations. The question is whether perform can enhanced using caching schemes.

A write-through cache approach would require each remote node to maintain a cache table of remote
cells that are referenced by local code. This is easily done with the compiler, since scan location is
declared before code is generated. There would be the overhead of locking the cache before reading the
value, and writes would always involve message calls, but we anticipate a major reduction in message
call traffic with this approach.

More sophisticated caching schemes may not be required for one simple reason: ControlCalc provides
block copy functions which can operate between pages, This means that the programmer can optimize
the application by understanding that it is much more efficient to explicitly move blocks of data between
remote pages than to rely on the implicit message calling.

5.3.1.6. Target Platforms

A target platform for the DCS system impacts ControlCalc in 1) the cpu architecture, which requires a
cross compiler, 2) the operating system and 3) the network interface. To this point. Polylith has focused
on UNIX platform with TCP/IP networks. The C compilers are, of course, already available. In the real-
time control area, however, platforms are much more heterogeneous.
The second phase of a ControlCalc-based DCS system will allow the code segment processes (known as
scans) to operate on distributed and heterogeneous hosts. This is complicated by the fact that
ControlCalc scans more closely resemble threads than processes. As such, they could be distributed
across processors on a tightly coupled multi-processor platform running, for example, Mach. However, a
DCS system is usually loosely coupled with a LAN network. For this reason, intelligent compiler
technology is required to minimize the network traffic required to maintain coherence between
distributed copies of the shared memory data space.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 19

5.3.1.6.1. Digital Signal Processing

DSP processor are greatly increasing in popularity for real-time applications, not just for classical signal
processing but for their high-speed data acquisition and raw processing power. The NRL group is
planning to use a DSP processor on a VME board from IXTHOS Corp. That board uses the ADSP-21020
processor from Analog Devices, which can achieve 100 peak and 66 sustained MFLOPS. This system
also comes with a set of mezzanine I/O modules with, for example, a 12-bit, 10 MHz A/D converter. The
operating system with that board is SPOX, which is also widely available on commercial DSP processors
such as those from National Instruments on PC-AT systems. SPOX is not UNIX, nor does it support
TCP/IP for communicati'm with the host computer. However, it does have a rich set of message passing
functions, making it is feasible to port a version of Polylith to SPOX. The Phase I1 project will use the
IXTHOS system as a target processor for the DCS-II objective.

5.3.1.6.2. Real-Time Unix

In the general-purpose processor market, there are a number of popular real-time operating systems
which have various levels of compatibility with UNIX and TCP/IP. ControlCalc currently uses the OS-9
system from Microware which supports the socket library. OS-9 is self-hosted with no multi-processing
capabilities. U.S. government agencies, including DoD and NASA have worked extensively with
LynxOS, VxWorks and VMEexec. Of these. LynxOS is closest to a real-time, self-hosted UNIX, while
VxWorks and VMEexec are designed with remote real-time kernels that use UNIX for hosted
development and support the full TCP/IP protocol. The NRL project is evaluating LynxOS, due to its
high POSIX conformance and self-hosted real-time capabilities. The DCS-Il objective includes porting
to LynxOS and VMEexec. VMEexec was selected due to the relationship with Motorola Corporation and
RTware, and its widely available and high performance real-time operating system kernel (PSOS from
Software Components Group).

5.3.1.6.3. Standard UNIX

Finally, a DCS application will include systems which are not real-time, particularly for functions like
operator interface, configuration control and back-end processing. For these systems, the standard is
UNIX running on RISC workstations. Much of the Phase II work will be done on Sun Sparc systems,
since Sparc is a de facto industry standard. Due to our important relationship with Encore Computer
Corporation, the system will also continue to run on Encore's Series 91 and Infinity computers, based on
the 88K RISC processor.

5.3.1.6.4. Cross Compilation

In order to run on heterogeneous targets. ControlCalc's internal compiler must be capable of generating
code as a cross compiler. Currently there are three versions of the compiler, generating code for the
386/486, 68K and 88K processors. However, the compiler is not packaged separately, so it will have to
be repackaged and supplied as a set of separate cross compilers. This work is included in the Phase II.
DCS-II objective.

5.4. Integration of a Real-Time Scheduling Analysis Tool

The Phase II project will include use of parts of the PERTS system from the University of Illinois to
allow users to profile and test the schedulability of real-time applications. This work was done under a
DoD contract. Based on Dr. Jane Liu's work and the system documentation provided, it is feasible to
export the scheduling information and performance constraints from a ControlCalc application and use
the analysis tools of PERTS to determine the limits of real-time behavior.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 20

This work will not involve porting PERTS to any other platform except those it is already available on.
It is expected to be used primarily on Sun systems. Porting to other systems will be considered after
commercialization and motivated by market demand.

5.5. Graphical Interfaces

Two technical goals focus on graphics: run-time displays for operator interface for the application itself
and graphics diagram editing to improve software productivity in application development. The
graphical diagram goal is presented as the Phase II optional portion.

5.5.1. Hierarchical Graphical Tool for Run-Thne Displays

This phase of the work plan involves adding support for hierarchical, or object-oriented, graphics.
Currently the graphics attachment process is flat, so the user cannot easily create libraries of complex
graphical gadgets built out of simpler gadgets. Both the graphical editors and the spreadsheet attachment
structure will be changed to support hierarchical structure with attribute inheritance.

Note that the term gadgets is used to refer to graphical objects whose attributes can be directly controlled
by mapping them into spreadsheet cells or tables. Gadgets are control-panel oriented, and include such
devices as:

1) X-Y Plots
2) Strip Charts and Trend Charts
3) Bar Charts
4) Needle Gauges
5) Input Sliders
6) Digital and Tcxt Readouts
7) Numeric and Text Entry boxes
8) Pushbuttons
9) Moving images
10) Hot Spots
11) LED-indicators
12) Geometric Shapes
13) Radio Buttons

5.5.1.1. Upgrades to the Editors

RTware's current X-Windows editor will be enhanced to add a container gadget for grouping collections
of lower-level gadgets, including other containers. Containers will be able to be saved individually to
files to create libraries of complex graphical objects. As in the low-level gadgets, multiple named
instances will be allowed. Work will also proceed on the DataViews product interface already in
progress. making use of its "sub-view" capabilities for similar functionality.

5.5.1.2. Inherited Attachments

ControlCalc drives graphics allowing the user to specify attachments which map spreadsheet cells to
graphical gadgets attributes. In enhancing this approach to support complex container gadgets, it is
necessary to allow sets of attributes to map into tables of data. The user will be able to define a prototype
table in the spreadsheet and attach individual graphical attributes to cells in the table. The table's layout
will be user-determined. The prototype table will be stored with the container gadget. When a container
gadget is instantiated, the attachment instantiation will be done by simply selected a position for a copy
of the prototype table. The standard spreadsheet features of relocatable cell addressing and range cut-

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 21

and-paste will be used to implement this. The prototype's contents then become the default attachment
characteristics.

If a container gadget contains other container gadgets, then the higher level container gadget's prototype
table will contain oilff- prototype tables. It is necessary that changes can be made to the default
prototype and be inherited even when the prototype is contained within a higher-level prototype. The
container gadget will therefore reference the prototypes of sub-containers, in addition to keeping an
instance, or local copy. of the prototype. This also requires a new cell attribute that will specify that a
prototype's local copy cell value overrides the original prototype.

5.5.2. Client-Server Attachments

The second technical work phase will improve graphics distribution by allowing the mapping between
spreadsheet cells and graphical objects to be supported by general-purpose query functions issued against
a spreadsheet. Currently there must a separate spreadsheet process controlling each display and running
on the target system. The Polylith interface developed for DCS-I will used as the basis for a "query
server" which would accept requests from display processes over the Polylith bus, look up or update data
in the spreadsheet and send responses. This would allow, for example. multiple spreadsheet instances to
be mapped into single displays, which cannot currently be done. A set of cooperating modules could
therefore present a unified operator interface. Display screens could be designed which consolidate
information from a variety of modules, and allow the operator to navigate among module displays within
a seamless graphical environment.

Note that this model differs from client-server model supported by X-Windows itself because the services
are concerned with data sources for gadgets and can be per gadget. rather than just per-window graphics
drawing information.

5.5.3. Modular Diagram System

There are two tools which will result from this stage of the Phase II effort. First is a function block
diagram system as a front-end programming system for the spreadsheet. Second is a module
interconnection diagram system for the Polylith bus.

5.5.3.1. Function Block Diagrams

This section of the phase II work plan will develop a function block, or data-flow, diagram front end to
the ControlCalc spreadsheet. This will allow the blocks of spreadsheet functions, data cells, expressions,
an icon and associated graphics to be declared a function block object and stored in an function block
library. A graphical diagram editor will be used to design an application by inserting and connecting
function block icons. The connections will be used to resolve external references from each function
block, and to indicate connections between fifo buffers and signal sources and sinks. Order of evaluation
constraints will be settable. as will such attributes as locked, synchronized evaluation.

The locked evaluation option is an important goal as it allows the ControlCalc compiler to completely
eliminate the overhead associate with existing data-flow diagram systems (e.g. LabView from National
Instruments and Virtual Engineering Environment from Hewlett-Packard). In existing systems, function
blocks are data driven, in that they execute only when data is ready. This means that each block must be
individually schedulable by some data flow monitor, often implemented as operating system pipes.
However. a typical control or acquisition application in fact works in perfect lock-step, where each data
point is operated on once by each function block in a predefined order. So while feedback control
algorithms are often expressed in diagrams. the existing data-flow runtime systems provide extremely
poor performance when used for control systems. Function block diagrams created in a spreadsheet and
executing at compiled ControlCalc speeds are expected to have major commercial impact on

RTware. Inc. 714 9th St. Suite 206, Durham NC 27705 Page 22

ControlCalc. based on customer request and the popularity of function block diagram in the controls

market.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 23

5.5.3.1.1. Range Files as Function Blocks

The fundamental function block design will be based on the existing "range file" capabilities of
ControlCaic. This capability allows users to save any rectangular range of the spreadsheet to a file. The
file contains all the cells in the range and the names of all cells in that range. The range can later be
loaded into another spreadsheet. When loading, the user specifies the top left comer location of the
range. The loaded range has the same shape as the original range. All relocatable cell references are
adjusted to reflect the new location and the range's names are added to the spreadsheet's tag name table.

This simple function has a number of limitations that will need to be changed to support true function

block programming.

5.53.1.2. Enhancements Required for Range Files

The existing range file capability allows only one copy of a range file to be loaded into a template if that
range file contains any symbolic names. If the same range file is loaded again, there will be duplicate
name conflicts. One solution to this problem is to load a range file by specifying a new location and a
name for that instance of the range in the spreadsheet. By doing this, the internal tag names can be
concatenated with the instance name to maintain uniqueness. This solution makes the naming private to
each instance of the range. It would also be possible for external functions to reference these internal
variables, but that would not normally be done within a function block system.

External references to the range file function blocks curre:itly must be done manually. However, the
relocatable nature of the block's cell references does allow some shortcuts. For example, the range file
could have a reference to a cell one column to the left of the block in a particular row. When that range
file is loaded, that reference would relocate and refer to whatever cell is in that relative location in the
new spreadsheet. By doing this, and by avoiding the use of symbolic names in the range files, users
currently can paste range files in repeatedly, and create tables of parameters in such relative locations.
This method is not sufficient for a true function block system. which would require references between
blocks to be resolved by the user drawing lines between attachment points on different blocks.

To support this dynamic linking between function blocks, we propose to add a new type of cell called a
"link" cell. A link cell will be a cell which can contain only the name of another cell. It would be typed
just like expression cells, and could be either empty or contain the text name of another cell. Expressions
could reference link cells normally. When the spreadsheet is evaluated or compiled, references to link
cells would resolve to references to the cell whose name is in the link cell. Of course, unresolved or
improperly typed references would result in syntax errors. Note that link cells are needed only for
external references from the range block. They provide a way of keeping all relocatable references inside
the function block, and a place to record the resolution of the essentially indirect references. Link cells
would involve no overhead in compiled run mode, since the link would be resolved at compile time. We
do not envision a need for dynamically changing links while the system is running. A manual
spreadsheet command would be available for resolving link cells by editing after the range block is
loaded. In a function block diagram system, the link cells would correspond to input points on the block.

References into a function block from the outside can be accomplished by simply adding the attribute of
external visibility to a cell. This would not actually be necessary if links were established manually
within the spreadsheet. However. when range blocks are used in a function block diagram system, the
creator of the function block needs to be able to specify which internal cells are visible externally. These
externally visible cells would correspond to output points in a function block diagram.

5.5.3.13. Overview of usage

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 24

The system will be used in a two part process: creating function blocks and using a function block
diagram editor.

Function blocks will be created inside the standard ControlCalc spreadsheet. The creator must follow the
rule that all external references are made through link cells and must set the external visibility attribute
where desired. The range can then be saved to a range file in the normal manner. A utility will be
provided io allow the creator to specify an image piece and/or text name which will show up in the actual
function block icons. Other decorative attributes of the block such as its shape and the position of the
attachment points could also be specified with this utility. A default shape and position of the
attachment points would be provided. Once created. the spreadsheet portion could be reloaded, edited
and saved with its attributes.

Function blocks also have to be configurable. A set of parameters must be made available to the user.
not as attachments. but for setting variables inside the block that are used by the expressions inside the
block. These variables are entirely defined by the function block creator, and can be any type of cell.
ControlCalc already has the ability to present a spreadsheet-based form(s) to the user in operator mode.
This mode allows the user to cursor between pre-determined setpoint fields and change those fields.
ControlCalc also supports the attachment of graphic windows to spreadsheet cells. These graphic panels
can be used for changing or viewing data in the spreadsheet using a rich set of graphics gadgets. Either
method could be used within the function block diagram system. In both cases, there are potentially two
displays required: an edit-option display and a run-time parameter adjust display. The function block
creator will be able to attach graphic windows to the block and indicate which window is shown initially
under the two conditions. The macro command cell capability already allows windows to be
dynamically called up and removed by the end user. The creator simply needs to indicate which macro
cells are to be initially executed. The rest of the interaction is entirely determined by the function block's
contents. If the simple spreadsheet interface is desired. a mode setting could be used to determine
whether the indicated cells are macros to be executed. or the top left settings of a spreadsheet region to be
displayed in operator mode. This determination could be made automatically by stating that if the cell is
a macro cell. then it is executed. otherwise it is the top left corner.

Function blocks would be used with a function block diagram editor. This discussion will not cover the
user-interface details of the graphical editor, as such systems are common and well understood. A
general discussion and certain functional details are important. however.

The function block diagram user will place icons representing blocks in the diagram and connect
reference points. Different symbols will represent he different types of reference points, and the editor
will complain if illegal connections are made. The user would also be able to open up the function block
and set parameters using either the attached window(s) or spreadsheet operator mode.

The function block diagram editor should be hierarchical, so that function icons can be grouped together
dynamically and viewed as a single icon. Such icons would have to have a pre-determined look. but
present a dynamic set of attachments. The icons in a group would then be edited on their own display.
and attachments outside the group would be indicated by attaching a border region or decoration of that
display area.

5.5.3.1.4. Sequence of Operations

The most difficult design area for the system is sequence of operations. Most function block diagram
systems are really data flow diagrams (as in LabView). These systems schedule functions as data
becomes available. This approach can result in unnecessary overhead and can also be non-deterministic.
both of which are problems for real-time control systems. The data-driven approach requires that each
block be separately scheduled and that an executive monitors data sources. While this is 3ppropriate in
some cases. in many applications the function blocks are best executed in i synchronous sequential

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 25

manner. This is particularly true in feedback control systems. In these systems, such functions as input.
scaling, limit checking, feedback equations and output are all inherently synchronized and run at a rate
specified by the user. The obvious case for data-driven evaluation is in message-passing or networked
applications where data is processed, possibly asynchronously. only when a message or new data is
available. Distributed control systems are the obvious example.

ControlCalc itself already allows both methods to be implemented. Multiple scheduled code segments
are provided since each page of the spreadsheet is a separate control task. Synchronization is provided
through the signaled scan option, and message passing or data piping through history (FIFO) cells.
History cells can optionally be configured so that read accesses wait for data and write accesses wait for
room, and with locking to ensure exclusive access. Monitor-style control can be constructed using the
signal and wait primitives. A network-based 1/O option also allows data to be piped between history
cells on different machines using streams. On the other hand, within each page execution is strictly
sequential (disregarding GOTO's). Depending on ips requirements, an application can be as simple as a
single scan doing one continuously iterating control loop or a whole set of cooperating scans scheduling
themselves as necessary.

5.5.3.1.5. Sequential Evaluation

Within a function block diagram system some method has to be provided that lets the user take advantage
of both types of scheduling. The simplest method is sequential evaluation. This would allow the user to
specify that the entire diagram. or a group within the diagram is executed sequentially. Sequential
evaluation would probably be the default mode. The system would use built-in rules based on examining
connections to attempt to determine the proper sequence of evaluation. The user would be able to
override those rules by drawing explicit ordering links between blocks. Circularities in the ordering links
would be forbidden.

This results in a system which is static and sequential in its evaluation order. The underlying method for
evaluating the function blocks would actually be the ControlCalc spreadsheet compiler. Each block
would be placed in an arbitrary location in the spreadsheet. which then provides the means for recording
the linkages the user creates. The compiler would compile the blocks not in the standard row-major
order of the spreadsheet, but block by block according to their ordering. This would be an elaboration of
the "one page is one task" structure now being used by ControlCalc. Instead. diagram information would
be used to drive the compilation and actual spreadsheet layout would not be important.

5.5.3.1.6. Multi-tasking evaluation

The user would be able to define multiple groups that could be separately scheduled. References
between groups would still be allowed. Currently, multipl- tasks are allowed on one machine, with all
pages sharing the three-dimensional spreadsheet as a sort of shared memory data base. This approach
would still work with the diagrams. All groups would actually be placed in the global spreadsheet. so
data references would resolve automatically. The compiler could also be used to handle distributed
applications, where groups are evaluating on different machines. Inter-group references would compile
to message-passing calls rather than simple data references.

5.5.3.1.7. Event or Data-Driven Evaluation

Event-driven evaluation is already supported by ControlCalc. Currently a page can be set up as a
signaled scan, which means it evaluates once each time it receives a signal (event). A signal function is
provided to allow spreadsheet expressions to send signals. Also. a wait function is provided to allow
scans to synchronize at any point in the code. This capability is implemented using global events, either
named events under OS-9/OS-9000 or System V IPC semaphores under UNIX.

kTware, Inc. 714 91b St. Suite 206, Durham NC 27705 Page 26

Under a function block system, event scanning could be declared as an evaluation mode for a sequential
group, instead of giving the group an iteration rate. This is equivalent to the method currently used with
ControlCalc pages. Alternatively. a graphical method could be used, involving a standard function block
that represents the global event. That icon could be connected to multiple signal senders and one
receiver. Linking a cell to a signal send would require that references to that link cell use it as the signal
i.d. number, and vice-versa. Sent signals would also be able to be linked to a schedulable group to
trigger its evaluation, using a special attachment decoration on the icon. Timer functions could be used
in this manner to graphically illustrate the source of iterative evaluation, since the difference between
iterative and event-driven for the groups is simply one of how the evaluation is triggered. It is also
possible to implement monitor functions (lock and unlock) which can provide exclusive control among
any group of functions using the same monitor. The monitor icon would be slightly different from a
signal icon. since it is initialized in a different state.

Finally, some enhancements can be made to the history cells to allow evaluation triggers to be set by a
history cell reaching a certain threshold. This would require that functions that write to history cells
check the threshold and send a signal when the threshold is exceeded. The history cell would have to
maintain some state information which allowed another function to reset the signal so multiple signals are
not sent for the same threshold condition. In general, there would have to be a history link cell which
allowed a function block to externally reference a history buffer, but conceptually this would work the
same way as simple data cells. A history cell configured to send signals on reaching a threshold would
then result in an interface decoration on the function block that could be attached to a global event icon
as a sender. With the locking option on history cells. this approach could be used to create completely
data-driven systems. Using network drivers to stream history cells together would then allow a diagram
to span distributed systems.

5.5.3.1.8. Graphical Operator Interface

While a function block diagram is a useful tool for a system designer. in production most applications
should present the simplest possible control panel interface to the operator. ControlCalc already allows
control panel graphics to be created and attached to cells in the spreadsheet. Each function block can be
configured with its own control panel window for run-Lime use. The Phase II task will provide a way of
creating a master control panel which can be attwched to either the local function block control panels or
to other global control panels for applications which don't need to involve the operator in the diagram
system. The simplest solution to this requirement seems to be letting the user create a custom function
block and link it to external data points in the usual manner. The ability to have a spreadsheet interface
on-line for creating custom function blocks is crucial for this capability. It is likely that every application
will have a semi-custom set of control panels, using the standard function block panels in some cases and
not in others. It will also be useful to allow command macros to include sub-panels from function blocks.
thereby allowing access to private data. This lets the operator. for example, select a PID control block
and adjust its internal run-lime parameters without having to export the entire parameter set from the
block. Including these sub-panels would then allow windows with banks of sub-panels, similar to the
modular design of hardware control panels throughout industry.

5.5.3.2. Module Interconnection Diagrams

This stage of the Phase II work plan will be to create a graphical editor and translator for interconnection
diagrams. The tool will allow the Module Interconnection Language files to be generated by parsing a
directed graph diagram of the module interconnections. The tool will include visual objects which
indicate the synchronization primitives applied to each interconnection. Run-time monitoring of
interconnection traffic will also be provided.

The product resulting from the Phase II effort will include an X-Window based graphical user interface
option, as that is already a part of the ControlCalc product on UNIX systems. This subsystem is distinct

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 27

from a graphical interconnection diagram system in that it provides display and data entry into a running
application. A diagramming system would be part of the application design process, although it could
also be used at run-time to monitor system status.

Preliminary design of a diagramming system will focus on two software packages: DataViews from V.I.
Corporation and MetaH from Honeywell. The DataViews system is already supported as a graphical user
interface by DataViews running on the Encore UNIX machines. It is being given high consideration both
due to its commercial availability on all major UNIX platforms and for technical reasons. Technically.
DataViews includes a library of graphic routines that provide CAD-style diagramming support that are
designed for creating such'an editor. MetaH is a specific modular diagramming system with hierarchical
structure that supports their real-time software development. The PERTS system also describes a task
graph model of real-time systems. Implementation of the system will either use DataViews or
enhancements to RTware's own graphical editor, as determined by the detailed design results.

5.6. Distributed Control System I: Remote Access - Functional Specification

5.6.1. Overview

The DCS-I functional specification describes two fundamental capabilities:

1) Presenting spreadsheet services and data to external processes.
2) Calling remote modules from within the spreadsheet.

Both of these capabilities can be implemented using the Polylith. and in fact make up the core of what
Polylith does. There are two problems that have to be addressed, however. First, there must be a way of
defining services, or interfaces, from within a ControlCalc spreadsheet. Second, there must be functions
that let the spreadsheet programmers create calls to such services in their spreadsheet templates. Note
that in ControlCalc a running spreadsheet template is a set of tasks processing the shared memory data
space of a three-dimensional spreadsheet. Each task is a separate executing process, instantiating a set of
spreadsheet functions. The spreadsheet function set is therefore considered a simple functional language.

To understand the requirements of the DCS system, it is useful to understand the general sequence of
operations in the implementation of a distributed application with Polylith. Distributed Polylith
applications are constructed in a modular fashion. Each module consists of an executable file and a MIL
"moduledescription" section file. The moduledescription section describes a "service" as an executable
program (source or binary) and the host it runs on, along with its object attributes and the Polylith
interfaces the module will use (both input and output). Note that a node can declare multiple interfaces,
and interfaces are declared as either input (sink or function) or output (source or client). An application
consists of a set of module services instantiated by a master "bus" program that runs on each host
involved. The bus programs requires that all the moduledescription MIL sections be linked together
along with an application-description MIL section. The application-description section defines a node in
the application, naming the node and specifying which module instantiates the node. Note that one
module can be instantiated as multiple nodes, hence the declaration of node names mapped to module
names. The application-description section also declares interface bindings by associating source/sirk or
client/function pairs. Each binding therefore maps two specific interfaces on two specific nodes. Once
this is done, the bus program has all the routing information necessary for its operation. An application
is actually executed by executing the bus program on each host, passing a parameter which is the linked
MIL file. The bus program(s) then execute the module binaries, which can then use the interfaces.

Given this Polylith structure. any particular module can be created independently and used in multiple
applications by simply rebinding its interfaces for each instantiation. This is the essence of a module
interconnection framework.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 28

5.6.2. Modular Interface to ControlCalc

Within the ControlCalc system, a module will be considered a particular sprcadsheet template. There
will be two form of interfaces: standard and user-defined. Standard interfaces will allow remote
processes to perform such generic operations such as stopping and starting the control logic. User-
defined interfaces will allow remote processes to read and write information from the control system
spreadsheet, and optionally to trigger, pend and wait using the spreadsheets counting semaphore
primitives. These modular interfaces will be either function or sink interfaces in Polylith, since they exist
solely to respond to external requests. However, since control scans are the user-programmed executable
functions in the spreadsheet, the services invoked by triggering a scan can be programmed to perform any
function the spreadsheet is capable of, including accessing subsequent remote services, as described
below.

5.6.2.1. Module Implementation

The actual executable program implementing the template's interfaces will be named using the template
file name with the extension .mod. This will be a 'C' function that will initialize by obtaining the
interfaces it must support, and then loop continuously doing the Polylith bus function: mhreadselect.
That function returns both a message buffer and a pointer to the name of the interface that the message
came in on. The module program will then look up the corresponding definition for the message's
interface. Each interface will have a list of spreadsheet data points which will be read or written.
Interfaces will have a configuration option to synchronize with the real-time spreadsheet executing logic
using the ControlCalc's existing counting semaphores. There will be a number of modes of
synchronization, so that explicit coding of the sequences is not required:

1) Monitor r/w control: Wait for signal A, read and write data, send signal A
2) Monitor reads: Wait for signal A, read data, send signal A
3) Monitor writes: Wait for signal B, write data. send signal B
4) Monitor service: Wait for signal C. do service in list below, send signal C

4) Signal Service: Read/Write data, send signal A
5) Wait Service: Wait for signal A. read/write data
6) Request service: Write data, send signal A. wait for signal B. read data.
7) Monitored Request: Wait for signal A. write data, send signal B, wait for signal C, read

data. send signal A

These modes (Signal service and Wait service in particular) can be also be used to synchronize external
processes. treating the spreadsheet logic as a rendezvous mechanism. The Polylith interface will have no
knowledge of this signaling involved, but reasonable naming of this type of interface can serve to
document the purpose of services using these features. It is important in selecting these functions to be
aware that some applications may use multiple instantiations of a module interfacing to one spreadsheet
template. If this is anticipated, then it would be normal to use one of the monitor synchronization modes
if interrupting an operation is not to be allowed. Note that the signals described abstractly as A, B, and C
will actually be a configurable ControlCalc signal number. There are 500 signal numbers available for
synchronizing tasks that perform operations on any one ControlCalc shared memory region. Since a
template. and therefore the instantiations of the module interface, are associated with a shared memory
region, these signals are common to all instantiations. This means that an interface with a monitor will
allow only one instantiation to execute the monitored operation, but will not interfere with interfaces to
another spreadsheet template, even though the same signal numbers may be used. On a UNIX system.
this facility is implemented with SYS V IPC's, using a key number to allocate ranges of signal id
numbers.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 29

The ControlCalc spreadsheet is already a multi-tasking, shared memory system. Therefore the
capabilities described above can be implemented quite easily. The spreadsheet data area already is kept
in a shared memory segment as a sort of shared memory data base. A library of reentrant routines for
reading and writing data, and sending and receiving signals. are already in place and used by programs
such as I/O agents and GUI window agents that are a standard part of ControlCalc.

5.6.2.2. Data Types

Data types will be specified using the ControlCalc data types, which consist of either simple types
(integers, booleans, floating point or strings) or arrays of simple types. An array type in the spreadsheet
is a range, or rectangular section, of the spreadsheet. Structured types are not supported by the
spreadsheet. There is therefore a corresponding data type in Polylith syntax for the data types in the
spreadsheet. This will allow the generation of MIL language definitions directly from spreadsheet-style
declarations. Other language interfaces can then access the MIL definitions without knowing about the
spreadsheet data types (another design goal of MIF).

5.6.2.3. A Module Interface Definition Command in ControlCalc

In order to define these external interfaces, a module specification command will be added to
ControlCalc's interactive command set. The module specification command will bring up a utility
program that lets the user create, delete and modify interface definitions for the current template. These
definitions will be saved as part of the template definition file. The user will also be able to cause a MIL
file to be generated, and a new executable binary file for the module to be built. The MIL file will
consist of a single "service" declaration, but without the host name field. The host name will be added by
a later utility that builds the complete application. The command will be presented in an interactive
window, presenting scrolling lists of input and output data points, radio button selectors for
synchronization modes, text edit fields and push buttons for editing. The following commands/operations
will be supplied:

Operations on a scrolling list of interfaces:

1) Add an interface.
2) Delete an interface.
3) Rename an interface.
4) Select an interface.

Operations on either of two scrolling list of data points:

1) Add
2) Delete
3) Edit
4) Verify data points

Mode Selections: Select one or none of the synchronization modes listed in section 5.6.2.1.
Signal number selection: Enter signal number to use for synchronization modes.

General Operations:

1) Accept new list
2) Discard changes to list
3) Create MIL file
4) Create module executable
5) View external interfaces

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 30

5.6.3. Def'ming an Application

Once a set of modules has been defined, an application is constructed by linking together the MIL files
for each module interface, and adding the application definitions. The resulting file is a complete
application MEL file, which is used by the bus program to start and run the application. The MIL files for
each module are created by the templates (or programmers in other languages). These files are complete,
except for the host names. Therefore linking these together means selecting and inserting the host names
while concatenating the files together. The original files must be left untouched, so they can be
regenerated when desired.

Declaring an application involves two types of declarations. The "tool" declaration instantiates a module
as a node in the distributed application. The name of the node can be the name of the module which
implements the node. It is also possible to instantiate multiple nodes using the same module. In that
case, an explicit node name is placed in the tool declaration. Node names must be unique. Once a tool
is declared, then an instantiation of an interface is defined by specifying node name-interface name pairs.
Within a node. interface names also, of course, must be unique.

Finally, the interfaces are bound together by declaring mappings between input and output interfaces. At
this point, the MIL file contains enough information to allow the bus program to start all the node
programs and physically bind the interfaces together using whatever low-level transport structure the bus
program implements. In current implementations that structure is always TCP/IP, and binding is done at
the socket level. The actual process of passing input and output data back and forth is done by passing
messages across the bindings, using the message formats that are defined in the interface declarations.

When the bus is run, two mode options are available, connection and keep alive. The default connect
mode is to have all messages mediated by the bus program. Essentially all connections are made to the
bus program. which acts as a router between the input and output half of every interface binding.
Optionally. the direct connect mode allows connection directly between the node processes, which results
in better performance. On the initial implementation, ControlCalc will use the standard mode. This is
necessary in order to allow a single module to handle multiple interfaces to a spreadsheet template.
Direct connect mode does not allow use of the mh readselect option for monitoring multiple interfaces.
In the general-purpose model we are implementing. a direct connect option would require a single
interface per node, or multiple nodes to implement a set of interfaces to one spreadsheet template. The
speed benefit of direct connection may justify the overhead of multiple nodes, and is a question we will
address when we benchmark the system.

The second option. keep alive, overrides the default I/O access mode, which is to open and close the I/O
channel involved on every message transaction. In most real-time systems, keep-alive would be required,
due to the very high overhead of opening and closing I/O channels. However, most UNIX
implementations imp. ,,•S a relatively low limit (15 - 32) on the number of open 1/O channels per process.
Again, this limitatic... a: es for a single node per interface, since the nodes' non-Polylithic interfaces to
the ControlCalc spreaý-Iieet is not limited in this manner, being based on shared memory and signals. not
I/O channels. An argument can also be made in favor of letting the keep-alive option be applied per-
binding, rather the per bus, as is the case in the current Polylith implementation. In that way, non-
ControlCalc languages that are best thought of as nodes with many interfaces each could accept the
performance loss, while performance critical bindings could keep their channels open.

5.6.3.1. Creating the Application MIL file

Creating the application definition section of the MIL file is actually programming part of the
application, since it contains statements which tie the module interfaces together. thereby instantiating

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 31

modules. However, this process is declarative programming, rather than sequential. It is therefore very
amenable to a configuration utility front-end similar to the one described for the module interface
definitions. Calling such a configuration utility within ControlCalc would also present a consistent
interface style.

Programming and debugging issues also indicate the usefulness of a configuration utility. Using the
construction technique for modules and their interfaces described in section 5.6.2.3., the result is a
collection of MIL sections. In a complex system, this would mean a large number of small files, making
it difficult to manage the application setup. An interactive configuration utility should therefore allow
the user to display multiple sub-windows, each displaying a MIL module declaration section, to simplify
browsing among the modules.

More importantly, both the application and the interface configuration utilities should provide interactive
checking of syntax, preventing such obvious errors as:

1) Declaring duplicate node names
2) Using input interfaces in the output half of a bind declaration, and vice-versa
3) Using unknown names
4) Illegal syntax in general
5) Non-existence of hosts or executables

The current method of creating all the MIL file(s) is a text editor, followed by a compiler. Some
typographical errors (such as naming mistakes) cannot be caught until run-time. An interactive utility
would be able to provide immediate feedback, and browsing. Of course, errors involving unknown
names should be posted as warnings, since it is not desirable to force. for example, definition of all
interfaces before any bindings involving that interface. For a variety of reasons, we plan to have our
application configuration utility maintain its own variation of a makefile which lists the modules
involved without actually constructing a concatenated MIL file. However, all such files will be kept in
text form, with a published syntax, so users who prefer a text editor, or have existing applications they
want to add ControlCalc modules to, can do so without re-keying their application MIL section.
Furthermore. the utility will be constructed as a stand-alone program, although a ControlCalc command
option will be able to invoke it from within the spreadsheet.

The application configuration utility will provide the following operations:

I) Add/Delete modules (services)
2) Declare a host for a module
3) Add/Delete/Modify tools
4) Add/Delete/Modify bindings
5) Browse the networks host list (/etc/hosts)
6) Open a module interface section for editing (ControlCalc interfaces only)
7) Link/Compile/Write a MIL file on one or every host (if NFS is available)

5.6.4. Calling Interfaces from ControlCalc Applications

Up to this point, we have discussed only a mechanism for implementing message receipt and, optionally.
reply to a message using the Polylith sink and function interfaces. It is equally important that
ControlCalc programs be able to initiate message transfers, acting through Polylith source and client
interfaces. Sink and function interfaces, as we saw, can be handled by treating the ControlCalc
spreadsheet as a data base with computation on demand. Except for the computation itself, no
programming beyond MIL-equivalent declarations are required. However, to implement source and
client interfaces, interfaces must be invoked from within ControlCalc's functional programming

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page32

language. To do this, one additional configuration parameter is required: a declaration of which
ControlCalc process implements the node.

5.6.4.1. Implementing Polylith Calls in ControlCalc

The basic approach we will take is to let the user access source and client interfaces as if they were
functions in the spreadsheet, for the basic Polylith message passing functions mh_read and mh write.
The programmer would think of these interfaces as remote procedure calls, or as message passing calls.
The function names would be the interface name. Because ControlCalc's language and compiler are, at
this point, completely under the control of RTware, we can enhance the language to support dynamic
function definitions such as this. Furthermore, ControlCalc's support for functional polymorphism
relaxes the expected requirement of including the tool name as a parameter to the function. Without
polymorphism this would always be necessary, since multiple instances of an interface name can exist.
either because different modules use the same interface name or because a module is instantiated as a
tool more than once. Access to the complete application and module MLL declarations allows the
spreadsheet parser to see if the name is unique. and require an additional tool name parameter (which
would have to be a constant string) only if the interface name is not unique within an application. Note
that the compiler can determine from the MIL file how many parameters an interface declares. This
means it is feasible, but perhaps not desirable for debugging, to distinguish between some common
interface names by using differences ;n their parameter declarations and matching them to the function's
parameter list. The only syntactic kludge required is that for client functions, output parameters would be
required to be listed before input parameters (or vice-versa, by convention). Naturally, parameter
ordering would have to match, since there is no parameter naming in the interface declarations.

Needless to say. it is also possible to provide direct implementation of Polylith's entire mh_ function set.
Since ControlCalc supports text processing functions, it is reasonable to include all the select and query
functions. ControlCalc's polymorphism inherently provides the varargs-style interface required for doing
this.

5.6.4.3. Application Startup Method Conflicts Between Polylith and ControlCalc

As it currently stands. Polylith uses a static process model of programming which presents certain
problems when being used with an interactive multi-processing system such as ControlCalc. The primary
restriction is that each module must be implemented as a process which can be executed by the Potylith
bus program. This is essentially how the entire application is started. Each module process must be a
uniquely named executable and cannot receive application level command line arguments. Polylith does
provide an attribute declaration statement for the MIL module section. which allows an instantiated
module program to read tagged attributes. This is essentially a way of passing arguments to a process (or
else process arguments are essentially a way of defining process attributes, your choice).

ControlCalc. on the other hand, operates with a small set (just three at this time) of executable modules
which are configured dynamically according to declarations and functional programs. An executable
ControlCalc program is actually compiled by the spreadsheet process, with code placed in shared
memory sections. Being a multi-tasking spreadsheet, multiple code segments can be created, each
potentially operating on any part of the entire three-dimensional spreadsheet data space. When the
application is run, an executive program is invoked for each code segment, and is passed the parameters
it needs to link to shared memory, link to various resources used by the code, locate the code segment.
and execute the code segment when triggered.

The source/client implementation described in the above section requires that each ControlCalc program
segment process be the binary for a node. To do this requires changes to either Polylith or ControlCaic's
process model.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 33

Changing Polylith to accommodate ControlCalc processes would involve making the bus dynamically
configurable. Rather than requiring that all nodes be executed by the bus, the bus could start
independently and allow processes to attach later. In attaching, a process would pass its declarations to
the bus, the bus would validate the declarations against unattached services in its MIL declarations, and if
a valid match were found, the bindings would be instantiated. At that point, the process would be free to
make calls on the node's interfaces. This approach would allow ControlCalc to set up the necessary
resource declarations for a process which is declared as the implementation of a node. Those resources
would be equivalent to the MUL file declarations, and would be passed in to the bus.

Changing ControlCalc to accommodate Polylith involves generating copies of the ControlCalc general-
purpose code segment master process, with unique names incorporating both the template key and the
code segment key. Parameters required by these process and the names of the binaries would have to be
added to the module's MIL section. Since ControlCalc creates the code segment and establishes the
process parameters when the application is started, the launch of an application would involve the
following sequence:

1) Start all ControlCalc templates involved in the application.
2) Each ControlCalc template process generates the necessary binaries and modifies the

relevant MUL sections.
3) Rendezvous on all ControlCalcs completing their generation phase.
4) Compile the master MIL file.
5) Start the bus.

While this process seems a bit involved, it can be made completely transparent to the user. We are
considering that a second bus be used to simply handle the startup process. That bus could be torn down
when the application is running.

There is a simpler approach possible, but it will result in a significant performance loss. The other
approach is to use the single node process that handles input interfaces to handle output interfaces on
behalf of the ControlCalc program. This would mean that each Polylith call from ControlCalc would
involve an additional message passing transaction to the node process. We consider this to be
unacceptable for real-time systems.

5.6.5. Virtual FIFO Connections

ControlCalc currently provides a TCP/IP socket I/O option that allows spreadsheets to exchange data
between "history cells". ControlCalc history cells are actually complete first-in, first-out (fifo) queues.
with a user configurable maximum size. They can be used internally as rotating ring buffers that
remember the last X values (hence the name history cell), or for buffering communication with other
ControlCalc processes of I/O agents, without requiring operating system intervention. The socket I/O
option transfers data from the output side, dequeuing it from the output history cell, to the input side.
enqueuing onto the input history cell. A block transfer size configuration parameter gives the user
control over the efficiency of this process.

Implementing an equivalent option with Polylith is quite straightforward with the system we are
describing. Note that this virtualization of the history cell across two spreadsheets is inherently
declarative, requiring no procedural programming by the spreadsheet user. Therefore it could be made
an optioit in the Polylith module definition utility. An exact equivalence to the current implementation
should be possible by using a Polylith array data type and the direct connect option.

5.6.6. Desired Performance Enhancements

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 34

There is one feature we will to add to Polylith to support the high performance networking usually
required in distributed real-time applications. That is to make the "keep-alive" and "direct-connect"
options configurable per interface. We think this could be done by establishing key-word object
attributes which are used by the bus when the system is started. Object attribute statements like
KEEPALIVE = interfacename or DIRECT CONNECT = interfacename would instruct the bus to use
these modes for bindings to the specified interfaces. They would also instruct ControlCalc to instantiate
separate processes for interfaces using the direct-connect mode, or if more than the maximum number of
interfaces allowed by the operating system are in the keep-alive mode. This approach would allow tuning
the application to achieve a balance of performance and complexity.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 35

6. Related Work

6.1. Spreadsheets

The ControlCalc spreadsheet is descnbed by this author (Clarke, 1991) with full documentation available
directly from RTware, Inc., Durham, NC.

In reviewing the literature on spreadsheets, there is almost a complete lack of academic consideration of
the spreadsheet paradigm as a programming language. This is probably stems from the fact that
computer spreadsheets were developed entirely by private business as a direct outgrowth of bookkeeping
methods. Like word processing, spreadsheets are typically considered to be a specific application,
thereby obscuring their many similarities to traditional programming languages and the wide
applicability of the spreadsheet model. Commercially, however, many products allow users to present
data in spreadsheet form. and some allow equation entry for data manipulation. There are, however, a
number of discussions of specific applications developed with spreadsheets.

The DYNAGRAPH system by Aonuma (Kobe University, 1987) is an interactive simulation and
modeling system based on an APL spreadsheet. A system for analytical chemistry is described by
Freiser (1992). Financial modeling for decision analysis is described by Morrow (1991) and statistical
analysis for social sciences by Bakeman (1992).

Commercial application of spreadsheet in control and data acquisition is found in the "Lotus Measure"
system based on the Lotus 1-2-3 spreadsheet. That system allows data to be imported from industrial
communicate links, to trigger recalculation and responses. However, the interpreted and single-tasking
execution of the Lotus spreadsheet limits the data bandwidth and response times. The Lotus product is
positioned as primarily a back-end processing tool for factory-floor data and not a control system.

DaDisp is a popular data acquisition and analysis product which use a spreadsheet format for presenting
tables of real-time data. This system is strictly data acquisition, with no feedback capabilities, and uses
the spreadsheet for data storage only, not expression evaluation.

Schelberg (1991) proposes a spreadsheet model as an alternative to the data-base model of distributed
control systems. His proposal envisions the spreadsheet as an organization tool, using hierarchical 3x3
spreadsheet matrices for representing a distributed system.

C.2. Module Interconnection Frameworks and Distributed Applications

The Polylith system and underlying research is described by Purtilo et al (1991). The Polylith Users
Manual is available from the University of Maryland.

Snodgrass (1989) and Purtilo and Snodgrass (1991) described module interconnection formalisms and the
resulting Module Interface Languages and contrast their different systems, Purtilo's Polylith system and
Snodgrass's Scorpion System (available at the University of Arizona).

Purtilo and Jalote (1989) describe the problems of distributed application prototyping and design and
requirements for communication primitives and a bus organization.

6.3. Graphical Diagramming Systems

Binns and Vestal (1993) describe the MetaH structural diagram system for real-time architectures
developed at the Honeywell Systems and Research Center. The Software Programmer's Manual is
available from Honeywell or the authors.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 36

Numerous commercial packages provide graphical diagramming systems, although not supporting
distributed applications. Most prominent are LabView from National Instruments (Austin, TX), Labtech
Notebook from Iconics (Foxboro. MA) and Virtual Engineering Environment from Hewlett-Packard.

6.4. Real-Time Distributed Systems

A major, ONR-funded effort addressing the design of real-time parallel software is the Proteus system,
being developed by John Reif (Duke), Jan Prins (UNC-CH), Allen Goldberg (Kestrel) and colleagues as
part of the Prototech project. The key approach to facilitating software prototyping and implementation
is to provide a language for the very high-level expression of concurrency and real-time constraints, and
techniques for their subsequent refinement to lower-level constructs and software platforms. The Proteus
language is an architecture-independent parallel programming language which incorporates fundamental
real-time primitives as well as novel high-level constructs for expressing time and resource constraints in
a parallel setting. The high-level constructs attempt to fill a gap in the expression of resource
requirements such as computational progress which conventional real-time constructs do not adequately
address.

6.5. Schedulability and Performance Analysis

ONR-funded work has resulted in the PERTS system (Prototyping Environment for Real-Time Systems)
being developed by Jane Liu and colleagues at the University of Illinois at Urbana-Champaign [LR+931.
PERTS supports the synthesis and validation of real-time systems by providing an integrated suite of
system building blocks, performance models, and measurement and analysis tools which capitalize on
recent theoretical advances for rigorously predicting real-time behavior. PERTS contains (1) techniques
for the specification of flexible real-time programs, (2) an extensible library of scheduling algorithms and
resource access protocols for time-critical applications. (3) tools for the performance prediction and
validation of real-time systems built using different workload models and scheduling paradigms
supported by these building blocks, and (4) simulation and measurement tools which extract the
processing time and resource requirements from annotated source code. PERTS tools and building blocks
are implemented in the C++ programming language and X-Window system, and can be customized and
integrated into other prototyping and software engineering environments.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 37

7. Potential Applications

This Phase 11 proposal's objectives together form a general-purpose distributed control programming
system. Application areas for a distributed control system are very broad, including process control.
remote vehicle control, machinery control and many others throughout the private sector and DoD.
Within DoD, such applications can often be mission-critical and very high performance, where even
fairly simple algorithms can be enhanced with distributed processing. In addition to these traditional
control applications, the resulting system will be very useful for simulation, both in physical simulators
like flight trainers and in computer hosted modeling.

All the following information in this section (section 7) is proprietary information.

7.1. Sample Control Applications

This section describes some typical applications of ControlCalc currently in use or development, and
briefly outlines how distributed features would be advantageous.

7.1.1. Navelex: Naval Airfield Control Tower

In the first application. ControlCalc was used for a Navy airfield lighting system. The application
involved controlling the runway light banks and monitoring relays to detect output faults. Monitoring
was done remotely, using radio modem links to an optomux-compatible I/O network. The user interface
was based on a graphical picture of the runways, with dynamic colors representing different states.
Constraints were applied to operator actions through rules defined for different classes of lighting. Pop-
up control panels are used to let the operator monitor and adjust lighting parameters. Dynamic color
control is provided through tables of data in the spreadsheet, with a color mixing option for
customization. This work was performed in about four months by a single engineer with limited software
experience. It was successfully reviewed by the Navy and installed in Beaufort South Carolina in April.
1993. Not incidentally, the same project was attempted a few years before using third-generation
programming techniques, but was canceled due to severe cost and time overruns.

After reviewing the system, Navelex has decided to take advantage of the multi-tasking nature of the
system and consolidate a number of different control tower applications on one computer. They will be
creating new applications using ControlCalc that acquire and display weather data, information from the
tower security system. equipment monitoring sensors and data from the collision detection and avoidance
computer. They plan to install display sub-systems at each controller's station, allowing each controller
to use monitor and adjust conditions in any the these applications. In particular, the interface to the
collision avoidance computer would be simplified with the MIF interface proposed for phase II. That
computer will be a high performance UNIX system, communicating with TCPiIP. Whilt it will be
capable of operating standalone, processing radar data, they want to be able to extract data from the
system and present it visually through ControlCalc. A MIF interface provides a simple means of doing
this with both ControlCalc and the programs already implemented for the collision algorithms and radar
data acquisition.

In addition to the Navalex contract, ControlCalc is being used by a British airport control systems
manufacturer (OpalPort) for their next generation of control systems. Their applications typically involve
distributed control of various airport sub-systems. Currently they use a proprietary token-passing
network, but they are interested in upgrading that.

7.1.2. Orion Aircraft Radar Systems

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 38

RTware has also been working with the Naval Research Laboratories on a project which will be able to
serve as an excellent demonstration site for the distributed control system resulting from Phase I1. This
project was recently awarded to RTware, with the selection of ControlCalc as the control language and
GUI system. The project is the design of the next generation of radar control and operator interface for
the Orion "sub-hunter" aircraft. RTware has discussed the possibility of using the project's laboratory as
a test site for the proposed ONR MIF control system with the responsible engineer (Sharon Hrin) on the
radar project. Her response has been very positive. Within her lab, there are a large number of
heterogeneous systems which often must work together in distributed applications. With the radar
project. for example, up to eight pods will be controlled simultaneously. Furthermore, the radar system
will also be running in a laboratory simulation environment in which computers doing simulation and
data analysis are interacting with the control system.

7.1.3. System Health and Performance Monitoring

In the last year, Encore Computer Corporation has produced a system health and performance monitoring
and control system for their Infinity line of parallel processing UNIX computers. The application
required porting ControlCalc to the 88K processor, to the UNIX operating system and designing and
implementing an X-Windows control panel interface builder. About ninth months after first delivery of
an alpha-testable port, the application is now being released as a standard, embedded feature of the
Infinity operating system. under the trade name CommandCenter. Reviews by mainframe users and
analysts indicate that the application provides state of the art visualization and control of the system's
operating condition. It consists of 200 different graphic screens, :bout 2.0 MB of compiled ControlCalc
code. 600 I/O points, extensive data logging and analysis, rule solving and operator actions. The system
logs reports. sends mail, supports multiple logins, does continuous data acquisition and still takes less
than one percent of system processing time. The entire application was developed by a single project
engineer, with much of this time spent qualifying the porting and development work required. He
estimates that the actual application development work, including 1/O drivers, took about six months.
This application is relevant to DoD because Encore has a number of contracts with DoD for mainframe
replacements. including a system at the Naval Research Laboratory.

The latest phase of this work was to make the system fully distributed using Encore's Reflective Memory
System (RMS). RMS is a high-speed direct memory to memory link between system nodes in diffe-ent
backplanes. For this technology. RTware provided extensions to the shared memory 1/0 feature which is
already available on the UNIX version of ControlCalc. The extensions allowed the application to map
reflective memory regions into ControlCalc shared memory blocks, which can then be accessed using
ControlCalc's standard I/O functions. The result is that each node of a cluster UNIX installation is
running a local ControlCalc application which is responsible for data acquisition. analysis and response.
Consolidated and exception data is posted to each node's reflective memory port. where the master
control and operations application can access it.

The reflective memory approach has large advantages in performance over TCP/IP. and works well for
continuous monitoring and control. However, it would be very useful to also have a message passing
option that did not require low-level implementation through shared memory and semaphores. The MIF
approach will provide just that. Furthermore, the success Encore has had with CommandCenter has
interested them in producing a general-purpose version of the system that would be compatible with the
standard system 3.2 UNIX kernel interface. The product would then be compatible with all the major
UNIX platforms. including those from HP. NCR, Sun and DEC.

The primary technical requirement for a general-purpose computer cluster CommandCenter is a message
passing I/O option. essentially the MIF concept. Such UNIX clusters do not usually have tightly coupled
shared memory like Encore's RMS. but always have the standard TCP/IP networking connections.
Because ControlCalc is completely programmable, the general-purpose CommandCenter application can
be customized to take advantage of any features, like RMS. that a particularly architecture provides.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 39

7.1.4. Turbomachinery Control Systems

ControlCalc is already being used for control of turbomachinery, of the type typically used on large
Naval vessels. A major turbomachinery controls manufacturer has now released their new generation
low-cost control product, which is a ControlCalc application. After starting work on March 1, 1993 they
had the system in test on May 1, 1993. No significant problems were found in alpha or beta testing, so
they are now starting to market it. The general manager of the company informed RTware that, if
anything. we undersold the productivity improvements from ControlCalc. Their application consists of a
full authority, multi-loop controller with a complete graphical user interface for monitoring and adjusting
system parameters.

It is interesting to note that the turbomachinery company's software engineering staff did not believe that
a spreadsheet programming paradigm would be able to do the job at all, let alone in three months. In this
case, one control engineer simply did it. This resistance to a much simpler programming method is
typical of software engineers, as we saw in some discussions at the Prototech conference. It is however.
not justified. We have found that non-programmers can produce highly complex, reliable control
systems even without the benefit of modular programming techniques. This is the experience of
spreadsheet users in general. which is why spreadsheets are one of the top three applications in use today.

ControlCalc has also been selected as the control system for all the turbomachinery in western Canada's
natural gas pipelines. After a two year pilot project competition with GE-FANUC (a world leader in
programmable controllers) at WestCoast Energy Corporation. ControlCalc was found to be superior to
the programmable controller in performance, flexibility, ease of use and operator interface. The
competition involved two s!parate installations running a pumping motor unit in production.
Deployment to over 200 installations is expected to begin in 1994.

Finally, a Naval subcontractor, Hydc Marine. has specified ControlCalc as the turbine control system in a
proposal for a Navy surface ship control system.

In all these turbomachinery applications, distributed control is an important issue. A turbine is always a
component in a larger system. whether that is a ship. a pumping station or an oil refinery. At this point.
ControlCalc includes a standard industrial network option called Modbus which is used to tie together
PLC's in such installations as oil refineries. However, Modbus is limited to moving blocks of data
around, and does not provide any type of high-level function call interface. It also has very limited data
types (16-bit integers only. for example) and has a fixed, master-slave configuration. It requires specific
knowledge about the layout of data in each slave by the master, and so does not support modularity very
well. Within, for example, a ship-board application, there may be multiple turbines each with their own
controllers, hooked to supervisory systems and ship-wide communication networks. Constraint
calculations such as power demand and damage control would be derived from a variety of data sources,
not just the turbines, and processed through various computer systems. The turbine control systems
would have to be hooked into the ship-wide control networks involving various types of computers and
software. A very flexible LAN topology is required to maintain high mission availability in the face of
hardware damage and rapidly changing network traffic patterns. A consistent interconnection system is
required to field such integrated systems in a timely and reliable manner.

7.1.5. Simulation and Prototyping

One application area that has not been explored but has great potential is simulation and prototyping.
One ControlCalc customer is doing simulation of a artificial diamond production process, and reports
good results. RTware has also developed a simple temperature response model in spreadsheet form
which is used to demonstrate feedback response to process control algorithms. In general. spreadsheets
are used extensively in financial modeling and simulations. In Japan, Aonuma (1987) has developed an

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 40

interactive modeling system named DYNAGRAPH using an APL spreadsheet. RTware knows of a
number of control engineers who model their algorithms in commercial spreadsheets before
implementing them in control systems.

The spreadsheet paradigm is useful for simulation because simulation usually involves large arrays of
data and sets of modeling functions (such as heat transfer functions) that operate on these arrays. The
ease of handling data tables in the spreadsheet, and the immediate presentation of results to the user in
tabular form are key features of a spreadsheet. When you add the ability for a spreadsheet to evaluate
continuously, do multi-tasking, read and write direct I/O devices, drive on-line graphics and run at full
compiled speeds, real-time simulators become teasible using the same paradigm. Potential applications
include training simulators, combat arena simulation, war-game modeling and some of the real-time
components of virtual-reality systems.

RTware has been told that a proposal for naval battle-arena simulation has been submitted to the
Malaysian Navy by the Malaysian subsidiary of Encore, and that response has been favorable.

Prototyping is another area where rapid. interactive development techniques are required. The
spreadsheet paradigm has a natural ability to present results to the user without any user interface coding
being required. This makes it easy to proglzm, test and interactively modify an application. With
ControlCalc's multi-tasking and real-time scheduling capabilities. complex systems can be rapidly
prototyped. The incremental nature of a spreadsheet is also a help. As long as a set of spreadsheet
formulas in internally consistent, it can be evaluated and the resulted observed. Tables of data loaded
from files, for example, can provide data sets for prototype function blocks to operate on. When
implemented within a MIF. such prototype applications can be presented as modules, without the overall
applications knowing how they were implemented. The sufficiency and efficiency of the specified
module interfaces can be immediately tested by simply entering data into a spreadsheet and binding the
interfaces to those tables of data. Simple counters and messages can be used to simulate the result of the
intended algorithms, allowing high level testing to proceed wiihout requiring full low level
implementation.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 41

8. Relationship with Future Research and Development

All information in this section is highly confidential and completely proprietary to RTware Inc.

It is expected that this proposed Phase II effort will complete the R&D phase and make possible the
implementation of the applications described above. Phase III funding will not be required from DoD. as
sufficient private and DoD application opportunities exist to make the resulting product commercially
viable. The remainder of this section presents a brief business plan for the commercialization of the
products developed by the phase II effort. At the end of this section, three letters are presented from
organizations with ongoing relationships with RTware. These letters describe specific opportunities for
the distributed ControlCalc/]MIF system.

8.1. Competitive Advantages

The product that results from this Phase II effort will have very significant competitive advantages in the
control systems market place, as listed below.

8.1.1. Modularity

MIF capabilities reduce system design cost in the following ways:

1) Software developers to work in parallel with a reduced chance of side-effect bugs
2) Software components can be reused
3) Language independence
4) Hardware independence
5) Reduced effort to enhance existing software systems
6) Simultaneous use of top-down and bottom-up design

In additions to these well understood benefits of modularity, the ControlCalc/Polylith implementation has
some unique advantages. The modular nature of Polylith itself makes it easy to change the
communications mechanism and port the system to different platforms while maintaining a consistent
interconnection methodology and syntax. The ability to declare the module interconnections in
spreadsheet form means that interconnection design can be immediately exercised manually and through
spreadsheet what-if simulations. The modular design can also be carried down into a MIF node using the
modular function-block technique. Low-level I/O and function programming in the spreadsheet allows
specific modules to be rapidly constructed, reducing the chances that problems discovered in
implementation will impact the high-level design. Finally, the ability to call software functions through a
standard, compiled sub-routine linkage means it is easy to insert existing software into the same template
used for doing the prototyping and design.

8.1.2. Performance

Compiled execution ,i control functions entered in spreadsheet form has been proven to out-perform all
PLC's. and to be comparable to compiled languages such as 'C' and Ada. This means that the power of a
spreadsheet language for prototyping and simulation can be applied to the run-time implementation.
While performance is a simple concept, ControlCalc's ability to achieve third-generation language
performance from a fourth-generation language is a primary factor in its current success.

8.1.3. Ease of Use

A spreadsheet is well understood to be easy to use by people from a wide range of disciplines, not just
computer science. In fact. most technical disciplines work within a paradigm of rules and mathematical.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 42

formulations that fit much more naturally into a spreadsheet format than into the recursive, sequential
paradigm of third-generation programming languages. As AI research has shown, most technical
knowledge is contained in sets of rules, and a spreadsheet is a simple way of entering and evaluating sets
of logical and numeric rules.

The strong emphasis on graphics in the ControlCalc/Polylith MIF system is an important component of
ease of use. In large systems, modularity must be visualized through graphical interconnection diagrams.
And of course the final applications must have graphical user interfaces. The MIF system will have both
the modular diagram interface and a uniquely powerful mapping approach to driving the output of
standard graphical user interface editors.

8.1.4. Integrated Environment

A consistent software environment for application design yields competitive benefits in both the
development process and the actual design of an applications. The system allows decision on the
topology of a distributed system to be made without artificial constraints imposed by the different
capabilities of the software components involved.

8.2. Current Major Market Areas and Opportunities

ControlCalc is currently successful in a broad range of market areas, many of which involve distributed
control and have direct application to DoD systems. A summary of actual control applications currently
done with ControlCalc follows:

Machine Control: Turbines, commercial industrial machinery, transit vehicles, injection
molding machines
Data Center Monitoring and Control: CommandCenter applied to the general market
Factory Automation: Automobile Parts Plant, Steel Mill, Aluminum Mill
Automated Test Systems: Engine Test Cells, Large Vehicle Wind Tunnels, Rocket Testing.
Destructive military equipment testing
Laboratory Instrumentation: USFDA X-Ray testing and qualification program
Airfield Systems: Control tower automation, lighting systems, loading ramp controllers,
integrated airfield systems
Process Control: Chemical processing and emergency alarm management and response

8.3. Future R&D with commercial partners

There are a number of areas in which R&D will continue, building on the results of this phase II effort.
These areas include particularly enhancement of the graphics and extending the system to other
platforms as they become established. RTware believes that the result of the phase II effort will be
products which will generate sufficient interest to fund continued development and enhancement through
internal funding and joint contracts with RTware's partners, end-users and distributors. To justify this
belief, letters from some of RTware's larger customers/partners are attached at this point. In general,
these letters cannot commit the organizations involved to specific funding, but do demonstrate serious
and sustained interest in purchasing and/or distributing the products that will result from the phase II
effort. based on their existing use of RTware's ControlCalc system. Details on these partners follow:

Encore Computer Corporation is a supplier of high-performance, parallel processing UNIX systems to
the data center market. Their ControlCalc-based application, CommandCenter, is currently shipping on
all Encore Infinity machines. Encore has funded RTware's port of ControlCalc to UNIX and X-Windows
over the last year and a half. Total funding has exceeded $ 150.000 and is expected to increase
somewhat over the next two to three years. RTware has a renewable five-year contract with Encore
which provides software royalties for every Infinity system shipped. Royalties from the Encore product

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 43

alone are now over $30,000 per quarter and are projected to exceed $500,000 per year within two years.
Encore is preparing plans to port the software to the general-purpose UNIX market, but has limited funds
to do this. This SBIR proposal's technical goals mesh exactly with the Encore's requirement for the next
phase of the work. Funding for phase II will dramatically improve the chances of the project succeeding.

Motorola Computer Group provides VME boards and systems to a broad range of markets, including
real-time control, automation and data processing, with a significant presence in DoD markets. Motorola
is now offering an integrated package of hardware and software using RTware's ControlCalc system.
Funds for research and development under this project are very limited since the major funding is
directed at worldwide sales and marketing through Motorola's electronics distributor, Arrow Electronics.
As indicated in the attached letter, Motorola has hardware and operating systems platforms which can
take full a antage of the results of this Phase II proposal. In fact, high-level corporate commitment to
the curren. project was difficult to achieve since that systems could not be used with the current, non-
distributed version of ControlCalc.

Gespac S.A. is a Swiss manufacturer of computers specifically designed for low-cost real-time control
and automation applications. Gespac also has a real-time GUI software package which RTware has
integrated into the ControlCalc system. That integration allowed the complete elimination of the C
programming requirements of Gespac's original package, and demonstrated the effectiveness of driving
GUI systems by mapping them into spreadsheet functions and commands. Gespac distributes and
supports ControlCalc worldwide, with applications in place in the U.S., Europe and Japan. Gespac is
heavily involved in the industrial networking market, especially with the emerging FieldBus standards.
They have a distributed Fieldbus system with intelligent local nodes capable of running ControlCalc
compiled code. Marketing executives at Gespac indicate that the DCS-II concept hosted on Fieldbus has
very exciting market potential. Gespac does not, however, have the resources to fund the fundamental
research and development efforts proposed here. They are capable, however, of porting the resulting
system to their hardware once the building blocks are in place.

8.3. Business Potential of the Product

At a time when only one major U.S. PLC manufacturer (Allen-Bradley) remains an American company.
continued success of U.S. innovation in the controls market is vital to long-term U.S. national interests,
and to maintaining the lead of the U.S. military in advanced software technology. Market research
figures in the trade press put the distributed controls market at over fifteen billion dollars annually.
worldwide. An increasing portion of that amount (now over 30%) is devoted to software and integration
services. The market is dominated by the large controls suppliers such as Westinghouse. Honeywell and
Fisher. but has many small to medium sized sectors. In chemical process control, one small software
company has annual sales of over 10 million dollars based on distributed monitoring applications alone.
One software company that sells just the operating system platform (VxWorks) used in a many Naval
applications also has annual sales of over ten million dollars. with strong continuing growth. The market
itself is expanding rapidly despite worldwide recessionary conditions. Success of the distributed
ControlCalc/Polylith product in even a few limited sectors can be expected to create a company of at
least that size. General adoption of the ControlCalc distributed spreadsheet paradigm by the controls
industry would have an impact comparable to the adoption of the electronic spreadsheet by the financial
industry.

8.4. Letters of Support

The following pages provide copies of letters of support for this phase II proposal from vw:•us
organizations. The originals of these letters are on file at RTware and may be inspected at any time.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 Page 44

o b

BOOZ.AULEN & HAMILTON INC.
4Me LACROSS ROAD SUITE 31. NORTH CHARLESTON, SOUTH CAROLINA UUS . TELEPHONZ: M00 64W - PAX, 00 50sW1

12 October 1993

To: Office of Naval Research

From: Mike Shuler

Subject: ControlCalc

Under current contracts/delivery orders from NAVELEXCEN Charleston, SC, Booz,
Allen & Hamilton, Inc. (BAH) has developed a control system based upon RTware's
ControlCalc real-time spreadsheet for use in all Navy and Marine Corps Air Traffic
Control (ATC) towers. In addition, NAVELEXCEN Charleston is planning to develop a
VME-based system for the ATC towers to consolidate numerous data gathering,
processing, communications and display functions into an integrated system involving
multiple displays, application programs, operating systems, etc.

It has been brought to my attention that RTware, Inc. is proposing a development project
for the Office of Naval Research under phase B of the SBIR program. According to the
material I have reviewed, this proposal encompasses the development of a distributed
control system based on the ControlCalc real-time spreadsheet and a high-level
interconnection framework. Given the current and anticipated NAVELEXCEN projects
involving ControlCalc mentioned above, I would like to express our support for this
project.

The system developed by BAH is dubbed the Airfield Lighting Control System
(AFLCS), although it is not limited to airfield lighting control. The AFLCS consists of
numerous distributed radio-controlled remote I/O devices which communicate with a host
PC in the ATC tower. A semi-scale graphical display of the airfield and all controllable
functions is presented on a 17-inch SVGA monitor in the tower. Using a trackball or
mouse, the air traffic controller simply clicks on a particular runway, taxiway, or other
graphically represented function depicted on the screen to initiate a control action.
Special windows can be pulled up as troubleshooting aids to analyze system operation
from the tower.

The remote devices consist of digital and analog I/O modules by Phoenix Contact, Inc.
Communication between the ATC tower and the remote devices is implemented using the
industry-standard Optomux protocol via RF modems configured in a point/multi-point
half-duplex arrangement. The system provides continuous status updates to the tower
display and immediate execution of operator-initiated commands, along with

RTWm. I. 714 th A Sudle 2K. Durhm NC 27MS Pfp 45

communication timeout and recovery per-controller. Communication loss with one or
more 1/0 controllers does not prevent communication with the remaining controllers.

Although the airfield lighting and other control functions are similar at the various
airfields, the number of 1/0 points will change from site to site depending on the airfield
configuration. In addition, implementation of a site-specific control functions and/or
control interlocks require customization of parts of the control spreadsheet. However,
software configuration control among the 40-plus airfields is made relatively simple due
to the high-level, 4GL nature of ControlCalc and the G-Windows window manager by
Gespac.

Reviews by operational and technical personnel have been very positive. One of the
major strengths of the system is its real-time multi-tasking capabilities. When
implemented on the planned VMEbus, the system will be expanded far beyond its current
airfield lighting control functions, and will require multiple application programs
(existing and new) and operating systems to be implemented concurrently. In addition,
network communications will be required between this system and other systems such as
RS-6000 Unix-based radar processors.

The distributed control architecture proposed by RTware could possibly be used to our
advantage in our VME-based system. It would then be possible to import/export data and
procedural interfaces from system to system within a consistent framework (the Module
Interconnection Framework) even when the systems are programmed in different
languages and run on different types of processors. This would simplify and rationalize
the interconnection between custom-written Ada or Fortran programs on the RS-6000
(radar processing, flight progress, traffic analysis etc.) and spreadsheet logic with
graphical interfaces built with the ControlCalc system. Other serial 110 subsystems such
as weather data collection could be processed by ControlCalc on the VMEbus, presented
to the control tower personnel and simultaneously routed to other dedicated computer
programs and data logging systems. There are clearly advantages to accomplishing the
above via a standardized interconnection framework instead of custom-built interfaces.

Although NAVELEXCEN Charleston will continue to support and enhance the PC-based
standalone AFLCS, its functions will eventually be incorporated into the VME-based
solution. While NAVELEXCEN Charleston has not been funded to develop such a
general-purpose framework as proposed by RTware, its existence would provide
alternatives not presently available for implementing the VME-based product described
above.

Sincerel

Michael B. Shuler
Associate

RTwre, Inc. 714 fth St. Suite 2K, Durham NC 27705 Page 46

SMOTOROLA
Computer Group

October 8, 1993

To: Dr. Ralph Wachter, Office of Naval Research

From: Jim Albers, Senior Staff Engineer, Motorola Computer Group

Re: RTware and ControlCalc

I would like to describe Motorola Computer Group's involvement with ControlCalc and add my
enthusiastic support for RTware's phase II SBIR proposal to the Office of Naval Research. The
proposed use of a Module Interconnect Framework (MIF) system would really increase the
types of applications and the acceptance of RTware's unique spreadsheet-based programming
system. Motorola Computer Group (MCG) cannot, of course, formally commit at this stage to
commercial use of any product that may result from that work. However, our work with Control-
Calc and the interest from our customers makes it very likely that MCG will do so.

MCG already offers ControlCalc as part of an integrated control system kit, the 162Kit, This
system is based on the MVME1 62, a single-board computer using the Motorola 68040 proces-
sor. The board offers:

* 4 IndustryPack (IP) slots that host a wide varety of graphics, communications, and industrial
I/O modules,

* optional SCSI and Ethernet
* 68040 or 68LC040
Sup to 4MB of DRAM and 2MB of battery backed SRAM in various configurations
•optional VME interface with high-speed D64 block transfer.

Running any of the leading real-time kernels and operating systems, the MVME1 62 platform is
especially suited for high-speed control, data acquisition, and communications in a wide range
of environments. With a good real-time OS, this hardware platform is well suited for custom pro-
gramming efforts. Before our MVME1 62 can be widely adopted by control engineers (non-pro-
grammers) as a real-time control applications platform, we require good real-time application
enabler packages. ControlCalc meets this need very well.

We find that the extremely high performance of ControlCalc's multi-tasking, compiled spread-
sheet does allow the 162Kti to handle applications that previously required dedicated Program-
mable Logic Controllers (PLCs) or costly custom programming efforts.

For example, veteran control system engineers that we work with have discovered that Con-
trolCalc is an ideal tool for building and maintaining control systems characterized best as com-
plex state machines (e.g. oil and gas plant shutdown systems). The complex state machine
specifications (with state transition matrices as large as 400x400) translate directly into Con-
trolCalc spreadsheets. Changes can be made and verified reliably and rapidly compared with
existing control systems.

5620 Smetana Drive, Suite 100
Minnetonka, MN 55343-9611

Telephone: (612) 932-1505 - FAX: (612) 932-9888
Email: abers@ch.mcd.mot.com

RI•m. 1. 714tI.bIi 2K, Ir6ibNCV "77 , 647

Mdtorola is very interested in a distributed version of ControlCalc running with X-Windows and
on multiple platforms, and for a very practical reason. While the current commercially available
version of ControlCalc does run on Motorola VME systems under the OS-9 single processor
OS, Motorola would prefer that the product run under our own VMEexec operating system.
VMEexec fits very will in the model proposed by RTware for the SBIR program. VMEexec is a
multi-processor system, where program development is done on a CPU running standard Sys-
tem V Release 4 UNIX, and the user interface runs on any X server. Real-time processing is
done with closely (or loosely) coupled CPUs in the same backplane or over a TCP/IP connec-
tions. VMEexec is a full set of software development tools, inter-processor communication
mechanisms, drivers and libraries built around the pSOS+ kernel. The VMEexec system today
has full use of C, FORTRAN, C++ (GNU or USL Cfront 3.0.1), X11 R5 libraries, OSI, TCP/IP
and X.25 protocol stacks, and so on. Motif clients provide high-level sourLe debug of running
target code in C, C++, and FORTRAN.

This architecture conforms exactly to the DCS-11 concept proposed by RTware. Since multi-
processor operations over the backplane and over TCP/IP differ only in latencies (not in proto-
cols), the VMEexoc platform can support both forms of distributed processing proposed by
RTware.

We are also very aware of the benefits provided by the sort of interconnection framework being
studied by RTware. In many applications, real-time subsystems must communicate with each
other and with other back-end processors. Use of a standard interconnection scheme that
hides implementation details of subsystems (or modules) is an obvious requirement. Previous
work on distributed operating systems at Motorola (the Computer X CXOS project) demon-
strated the technical and market demand for a system built on a truly distributed message pass-
ing microkernel. The primary advantages of CXOS and the DeltaRT systems based on CXOS
were also its downfall. By providing highly integrated distributed graphics, DBMS, and applica-
tion enabler tools (the Rapid Development Platform), the DeltaRT platform enabled the solution
of many tough distributed processing problems. However, the proprietary CXOS core of
DeltaRT limited its adoption.

The need today is to host distributed systems of open platforms, especially UNIX.

Again, Motorola can make no commitment at this point. However, the proposed development
efforts fit very will with both our immediate work with RTware, our medium term plans for VME-
exec, and the long term need for the adoption of a standard interconnection framework in the
real-time market.

1 , Albers
f~ iosior Staff Engineer

Motorola Computer Group

RTwwe, Inc. 714 9th SL Sulte 20, Duarbam NC 277 Pae 48

Encore Computer Corporation
6901 West Sunrise Boulevard
Fort Lauderdale, Florida U.S.A.
33313-4499
Telephone (305) 587-2900

October 8, 1993

Office of Naval Research
Dr. Ralph Wachter

Dear Dr. Wachter:

For the last year, Encore Computer Corporation has been involved in a major software
development effort using RTware's ControlCalc software product. The result of this
effort has been our CommandCenter system software package. CommandCenter is a
sophisticated control and monitoring system for Encore's Infinity series of massively
parallel UNIX machines. Infinity systems are positioned as "right-sized" mainframe
replacements, and currently nrnm the highest Transactions per Second benchmarks ever
recorded on the Oracle relational database. Infinity machines have been shipping with
CommandCenter, over this year to such major accounts as The Naval Research
Laboratories, DISA Megacenter, and has been approved for the DMRD924 program of
the Department of Defense, and to major commercial accounts such as EDS and the IRS.

In all applications, CommandCenter has been acclaimed as a state-of-the-art system for
on-line system monitoring and control. Encore was able to produce a highly graphical
interface and a consistent, easy to understand presentation of numerous system
parameters using ControlCalc as the core of the product. CommandCenter uses a data
agent to read and write data from the operating system kernel, placing all data in the
multi-tasking ControlCalc spreadsheet. Our entire system of over 300 screens, dozens of
tasks and continuous I/O was created without a single line of traditional code, and in less
than one person-year of development. Due to the compiled, multi-tasking capabilities of
ControlCalc, the CommandCenter application runs very efficiently, typically using less
than one percent of cpu time while doing continuous system monitoring.

ControlCalc was selected for this application after an extensive review of the many
products available in the UNIX market. ControlCalc's combination of high performance,
extendibility and programmability was unique. Our experience with the system has
proven that the spreadsheet programming approach to on-line systems is extremely
productive, and compares very favorably to application-specific packages and to third and
fourth generation programming languages. Encore has provided ongoing funding to
RTware, Inc., the owner of ControlCalc, to port the system to the Infinity and support our
development efforts.

Our current work on CommandCenter focuses on Encore's exclusive Reflective Memory
System (RMS). RMS provides a high-speed, memory to memory link between the multi-
processing nodes of large scale data center installations. RMS performance and the
associated software in the Infinity File System results in Infinity's unprecedented

RTwareM In. 714 9th SL Sitle 2KE Durham NC 27705 Par 49

(OMP.Til CONPORATIO%

scalability in even large, transaction-oriented mainframe applications. CommandCenter
will soon be released with RMS support, allowing simultaneous monitoring of remote
nodes without any network traffic overhead. Each node in the system runs a local copy
of CommandCenter and communicates only its results over RMS. The result is minimal
traffic between nodes and robust stand-alone operation in event of a node or
communication failure.

Looking ahead, Encore expects to continue developing CommandCenter and working
with RTware to enhance ControlCalc. One area of particular interest is extending the
CommandCenter system to handle heterogeneous, large-scale systems using network
communications such as FDDI or Ethernet. For this reason, we are very interested in the
proposal RTware is submitting to ONR under the SBIR program. We have reviewed the
technical proposal and find that it fits in very well with our long-term plans.
Encapsulating ControlCalc within a Module Interconnection Framework (MIF) will allow
us to present a product which is portable, extensible and can interact with existing
systems.

While Encore Computer Corporation will continue to fund development of RTware, we
are aware that major enhancements such as MIF and porting a wide range of platforms
will require support such as the SBIR program is specifically designed to provide. We
can assure ONR that the resulting product will be commercially viable and that Encore
specifically will be interested in using the product.

Sincerely,

"Vie President, Engineering &
Chief Technical Officer

ZA/kb

RT" 1wnc. 714 9h SL Suite ^ Duram NC 2776 "a5

SENT B.SWR1 EFVP 1--19-93 09:45AM:, 27E2 919 28 6629 N 2

SOUTHWEST RESEARCH INSTITUTE
*&nCULSaPA*2. 0 POSTOPPtC9DRAWOSmIQo 0 GANW?ONMIo V&XA8 0•;g-ac 0 1s1ai6114-11", 0 T61"X4464

amftL PUit. am V04"JI newftom
T O E M Pat P 1164 M O c t o b e r 1 8 , 1 9 9 3

Richard Clarke
RTWare. Inc.
714 9th St.. Suite 206
Durham. NC 27705

FAX: (9191 2S6-6629

Dear Richard:

As ve have discussed over the last year or so, SwRI is very interested in an Iconic
programming interface, as in Nutional Instruments' LabVicw fur Windows (c) or MatrixX.
The abilit. to provide a polymorphic data flow, while not the driving factor, certainly allows
our users t.e upportunity to extremelv quickly flesh out their ideas and turn them into
working programs.

Additionally, as our high speed combustion needs continue to grow, it would be
helpful if there were a way to distribute the processing programs across multiple CPUs. It
is very expensive to purchase high-speed super micros to ;,nalyze data for all of our 40-50
test cells. I" ControlCalc supported a distributed mechanism, this concept would be easier
to implement and nearly transparent to the user.

Also. a- we have discussed. our need for this type of interface has finally made
management willing to invest the necessary resources, such as our manpower or division
dollars, on :he development of such u product. It would be helpful/useful for us to have
this, and a.s such, we are willing to cooperate with RT\Vare in the development of this
product.

Please .'et me know of future plans for this style (if interface and the possibi:ty of
distributed processing. We enjoy our close relationship with RTWare and foresee thiese
products fit:ur'ng heavily in our test/controls development future.

Sincerely,

Josef Zeevi
Research Engineer
Department of Vehicle Systems Research
Telephone: (210) 522-5389

JZ:jw

A WN SAN ANTONIO. TEXAS

",OU&TON. l 0X17 1 O 11MOIT. MICHIGAN 0 WAS",NO'hON. OC

ItTvare, hlc. 714 ft St. Suite XG, Durham NC 27705 Pag 51

sow. No"A

3: MM r24M

TO; Office of Naval Research

R=O• Fred Strouse, General Manager, Gespac, inc.

DATE: October 18, 1993

SUBJECT: ControaCal¢

I would like to express Gespac's strong support for the ControlCalc/MIF
Phase I SBIR proposal. submitted by RTware to the Office of Naval
Reseach. Our long-term Involvement with ControlCalc shows that the
spreadsheet Idea is very powerful, and very practical. Enhancements to
support distributed control systems are definitely the important next step
for this product.

Geapac Inc., and our parent company, Gespao SA, promote and distribute
ControlCalc worldwide for demanding real-time applications. ControlCalc
has been combined with Gespads real-time graphical windowing
environment (G-Windows) and graphics user editor (G-View) to provide a
very simple method of driving custom graphical interfaces without any C
programming required. Applications in both industry and government have
shown that ContrlCalo completely lives up to its promise of hard real-
time performance in a spreadsheet environment

Gespal supplies intelligent distributed V/O systems using various
technologies, including Flbus, FIP, and BITBUS .We are extremely
interested In the RTware proposal's goal of allowing multitasking
spreadsheet applications to be distributed across tightly or loosely
coupled networks. Distributed real-time control is a major target market
area for Gespac. Distributed ControlCalb will be very Important to us as
we penetrate the DCS market

While Gespac cannot fund an effort of the scope outlined In RTware's
proposal, I can assure you that Gespac wi participa.te in
commercialization of the resulting technology. Gespac already is an OEM
for RTware, and we expect that relationship will continue to expand.

RT~wat, IN. 714 9th SL. SWI 2KE Dorhm NC 277 Pug S

SAs part of our cooperation with Rtware, GeapaO supplies to Rtware, for
example, all the equipment necessary for Rtware to support our line of
rugged, real-time computer systems and VO.

Again, I would like to say that Gespac fully supports this proposal and
looks forward to exciting marketing opportunities for the products that
will result

Sincerely,

Fred Strouse,
General Manager, Gespac Inc.

ItTware,. W714 96 SL Su 6, KDurbm NC 2W Pa 53

9. Key Personnel

1) Richard J. Clarke, Principle Investigator and President of RTware. Inc.

Mr. Clarke graduated with highest honors with a B.A. in Sociology from U.C. Berkeley in 1977. In
1979, Mr. Clarke entered Rensselaer Polytechnic Institutes' graduate school (Hartford Graduate Center).
Mr. Clarke maintained a 4.0 GPA and received a Masters in Computer Science in 1981. After
graduation, Mr. Clarke continued to work in industry, specializing in real-time control and factory
automation systems. Prior to founding RTware in 1990, Mr. Clarke held Principal Engineering positions
in Data General's real-time and UNIX operating system kernel giuups, was supervisory of control
systems for a large industrial machinery manufacturer and was software manager for real-time operating
systems at a VME systems company. Mr. Clarke has published one paper describing the application of
spreadsheeLs to real-time control (Clarke, 1991).

2) Anthony Kostichka, Real-Time Software Engineer. RTware Inc.

Mr. Kostichka received his B.S. in Electrical Engineering from the University of Wisconsin in 1990.
Prior to joining RTware in 1993, Mr. Kostichka worked for three years in the UW chemical engineering
laboratory designing data acquisition and control software and instrumentation. Mr. Kostichka also
worked extensively with Graphical User Interfaces and has expertise in object-oriented graphic, C++
programming, MS-Windows and Macintosh programming. At RTware, Mr. Kostichka is responsible for
l/0 drivers, including interfaces to industrial networks, and for sections of the graphical interface of
ControlCaic.

3) Steven Burnett, Technical Writer, RTware Inc.

Mr. Burnett received his M.S. in Technical Communication from North Carolina State University in
1991. Prior to joining RTware in 1992, Mr. Burnett was responsible for technical reports to the
Environmental Protection Agency from a EPA contractor. At RTware, Mr. Burnett is responsible for the
ControlCalc documentation set, including User's Guides, Reference Manuals, Tutorials and Installation
Guides.

RTware will also be hiring an additional senior software engineer and one junior software engineer for
the phase I1 effort. The senior engineer will be at or above the Masters of Computer Science level, with
expertise in communications, multi-processing, language design and graphics programming. The junior
engineer will have a B.S. in computer science, and will provide programming and operations support as
required by different stages of the effort. RTware will also contract with a senior, PhD-level individual
with expertise in real-time languages, distributed processing and visualization for fundamental design
work. This individual is listed in the cost proposal as Principal Engineer.

10. Facilities and Equipment

RTware's Durham N.C. offices will be the site of at least 90% of all work done in this project.

A number of computer systems will be required to carry out the Phase II effort. These include standard
workstation systems for software development and specialized real-time systems for testing and porting
the software to target environments. A detailed equipment list is presented in the cost proposal. Note
that exact models and prices are not in the cost proposal, as this is subject to change, within the budget
figures presented.

RTware, Inc. 714 9th St. Suite 2K Durham NC 27lo Pqe54

q q

11. Subcontracts or Consultants

Consulting services will be required both to minimize the time to learn and integrate third-party software
and to make any modifications required in a timely manner. Consulting will be obtained from Dr. James
Purtilo at the University of Maryland for the Polylith system, and from Dr. Jane Liu at the University of
Illinois for the PERTS system. In both cases, consulting may be done directly by the professor, or by
qualified graduate students or researchers, depending on the nature of the work required. In all cases,
hourly rates and total costs will not exceed the budget figures presented in the cost proposal.

Specific tasks expected to be performed by consultants include:

1) Enhancing Polylith to support per-instance declaration of keep-alive mode.

2) Enhancing Polylith to support dynamic registration of module interfaces.

3) Porting Polylith to communication protocols other than TCP/IP.

4) Constructing an interface to the PERTS system to provide on-line access from ControlCalc.

5) Reviewing the real-time scheduling and synchronization primitives for completeness and efficiency.

12. Current Pending Support

None.

There is no current pending support for this proposal by any Federal agency, DoD component or the
ONR.

RTware, Inc. 714 9th St. Suite 206, Durham NC 27705 P 5e

13. Cost Proposal

13.1. Name of offeror: RTware Inc.

13.2. Home office address:

RTware, Inc.
714 Ninth Street, Suite 206
Durham, North Carolina 27705

13.3. Location work will be performed:

714 Ninth Street, Suite 206
Durham, North Carolina 27705

13.4. Title of proposed effort:

Module Interconnection Framework for Software Producibility

13.5. Topic number and topic title from DoD Solicitation Brochure:

N92-112, Module Interconnection Frame for Software Producibility

13.6. Total dollar amount of the proposal: $ 730,227

13.7. Direct material costs:

Item # Qty. Descriptnn Uimt Cost Total Cots

1 3 Sparc Classic Workstations with Professional $ 5,000 $15,000
C development Software, color monitor and disk.

2 1 LynxOS real-time operating system, $12,000 $12,000
including 2 years support and professional
OEM development licenses.

3 1 DSP operating system and software $ 4,000 $ 4,000
development package.

Total Direct Material Cost: $ 31,000

134. Material Overhead Rate: N/A

13.9. Direct Labor:

Name Resnnnihilitv Hnurly Rate Hours Total Cost

Richard Clarke Principle Investigator $43 1500 $64,500

,Thare, Inc. 714 9th St. Suite 2K Durham NC 27705 Page 5 6

Principle Engineer Design $60 1500 $ 90,000
Senior Software Eng. I Design and Implementation $30 4000 $120,000
Tony Kostichka Graphical Interfaces, Comm. $18 1500 $ 27,000
Junior Software En I. Programming and Support $14 4000 $56,000
Syd Chemey Business Management $ 20 200 $ 4,000
Steven Burnett Technical Writing $13 400 $ 5,200

Total Direct Labor:. $ 366,700

13.10. Labor Overhead

Labor Overhead Rate: 24%
Hour Base: 13,100, $ 366,700

Total Labor Overhead Cost- $ 88,008

13.11. Special testing: N/A

13.12. Special Equipment: N/A

13.13. Travel:

The travel budget will include attending conferences, training sessions, meeting with consultants and
working on-site with customers on demonstration applications. Specific travel plans cannot be made at
this point, but the following list-provides estimates of the number of trips (by individuals) and expected
expenses. Cost per trip is estimated using per diem of $150 plus estimated transportation cost.

Number of Trips Purnose of Trip Fstimated Cost/Trip Total

8 Attending Conferences related to the work $1,600 $12,800
effort. Estimate is based on two individuals
attending four four-day conferences each,
including conference registration costs.

4 Meeting with Consultants $700 $2,800

4 On-site work on demo projects. Note that $1,500 $6,000
each trip is estimated at one week.

Total Travel Budget: $ 21.600

13.14. Consultants

Consultants will be used from the offices of the following three university professors, for work related to
the indicated software systems developed under the direction of those individuals. The consultants will
be either the professor or graduate students or research staff as available and as recommended by the
professor. Consulting rates will be $ 60 per hour.

Prfessor. Location and Work Hours Tot2ai Ct

1) Dr. James Purtilo, University of Maryland 100 $ 6,000
For work on the Polylith software system.

RTware, Inc. 714 %th St Suite 2K6 Durham NC 2775 Po 57

2) Dr. Jane Liu, University of Illinois 40 $ 2,400
For work on the PERTS software system

3) Dr. John Reif, Duke University 200 $12,000

For real-time prototyping language work.

Total Consulting Cost: $ 20,400

13.15. Other Direct Costs: N/A

13.16. General and Administrative Overhead

G&A overhead is applied to the total of all the above costs, using a rate of 29%.

Total Expenses: $ 527,708

G&A Overhead: $153,035

Total Cost: $ 680,074

13.17. Royalties: N/A

13.18. Fee or Profit- $50,000

13.19. Total Estimated Cost: $ 730,743

13.20. Authorized Signature:

Signed: '5 4'-e . z•' 2 , Date: OctMr 19.-1993
Richard J. Clarke,Vtresident of RTware, Inc.

1321. Answers to specified questions:

a) Has any executive agency of the United States Government performed any review of your
accounts or records in connection with any other government prime contract or subcontract within
the past twelve months? NO

b) Will you require the use of any government property in the performance of this contract? NO

c) Do you require government contract financing to perform this proposed contract? YES

13.22. Type of Contract Proposed: Firm-fixed price

ITware, In. 714 9th SL Suite 2K Durham NC 27M Pace 56

Bibliography

[Aonuma 1987] T. Aonuma, An interactive Simulation Modeling System: DYNAGRAPH for multi-period
planning on an APL spreadsheet, Kobe University of Commerce, Kobe, Japan (1987).
[Binns 1993] P. Binns & S. Vestal, Formal Real-Time Architecture Specification and Analysis, to appear
IEEE Transactions on Real-Time Operating Software and Systems (1993).
[Clarke 1991] Clarke, R.J., Real-Time Control The Spreadsheet Paradigm. Proceeding of the Tenth
Annual Control Engineering Conference, (May 1991) pp. 143-150.
[Freiser 1992] H. Freiser, Concepts and Calculations in Analytical Chemistry, a Spreadsheet Approach.
CRC Press, Boca Raton, FL (1992).
[Hof 1990] Hofmeister, Atlee and Purtilo, Writing Distributed Programs in Polylith, University of
Maryland Computer Science Department, Nov 1990.
[Kral 19921 I.H. Kral, The Excel Spreadsheet for Engineers and Scientists, Prentice-Hall, Englewood
Cliffs, NJ (1992).
[Liu et. al. 19931 J. Liu, PERTS: A Prototyping Environment for Real-Time Systems, Report No
UIUCDCS-R-93-1802, University of Illinois at Urbana-Champaign (1993).
[MN+92a] "Prototyping N-body Simulation in Proteus", P. Mills, L. Nyland, J. Prins and J. Reif. Proc. of
6th International Parallel Processing Symposium, Beverly Hills, CA, pp.476-482, IEEE, March 1992.
[MN+92b] "Prototyping High-Performance Parallel Computing Applications in Proteus", P. Mills, L.
Nyland, J. Prins, J. Reif, Proc. DARPA Software Technology Conference, Los Angeles, CA, April 1992,
DARPA, pp 433-442, April 1992.
[MPR93] "Rate Control as a Language Construct for Parallel and Distributed Programming", P. Mills, J.
Prins, and 1. Reif. Proc. of IEEE Workshop on Parallel and Distributed Real-Time Systems (IPPS'93),
Newport Beach, CA, April 1993.
[Morrow 1991] V. Morrow, Handbook of financial analysis for corporate managers: with spreadsheet
models for decision analysis and performance evaluation applications, Prentice-Hall (1991).
[Purtilo 1991) Purtilo, J., The Polylith Software Bus. To appear, ACM Transactions on Programming
Languages and Systems. Currently available as University of Maryland TR-2469
[Purtilo 19851 Purtilo, J. Polylith: an Environment to Support Management of Tool Interfaces. ACM
SIGPLAN Symposium on Language Issues in Programming Environments, (July 1985), pp. 12-18.
[Purtilo et. al. 1991] Purtilc . D. Reed, D. Grunwald, Environments for Prototyping Parallel Algorithms.
Journal of Parallel and Distributed Computing, vol. 5 (1988) pp. 421-443.
[Redondo 1993] J.L. Redondo, Schedulability Analyzer Tool, Report No. UIUCDCS-R-93-1791,
University of Illinois at Urbana-Champaign (1993).
[Schel 1991] C. Schedlberg, The Problem with Large, Tightly Coupled, Distributed Control Systems and
How to Solve It. Proceeding of the Tenth Annual Control Engineering Conference (1991) pp. 161-171
[Si!93] A. Silberman, "Task Graph Model", in RTM: an Object-Oriented, Data-Driven Real-Time
Environment," Ph.D. thesis (in preparation), Department of Computer Science, University of Illinois at
Urbana-Champaign, 1993.
[Snodgrass & Shannon 1989] Snodgrass, R. and K.P. Shannon. Mapping the Interface Description
Language into C. IEEE Transactions on Software Engineering, vol. 15, no. 11 (1989) pp. 1333-1346.
[Snodgrass 1989] Snodgrass, R., The Interface Description Language, Definition and Use. Computer
Science Press, Rockville, MD (1989)

ControlCalc User's Guide and Reference Manual, RTware Inc., Durham NC (1991)
Labviewfor Windows User's Guide, National Instruments, Austin, TX (1993)
MetaH Language Reference Manual, Honeywell Systems and Research Center, Minneapolis, MN (1993)

RTwaw, Inc. 714 9th St Suite 2K, Durham NC 27705 Page 59

